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ABSTRACT 

In this work, we propose a novel feature extraction algorithm that improves the robustness of automatic speech 
recognition (ASR) systems in the presence of various types of noise. The proposed algorithm uses a new cepstral 
technique based on the differential power spectrum (DPS) instead of the power spectrum (PS), the algorithm replaces 
the logarithmic non linearity by the power function. In order to reduce cepstral coefficients mismatches between 
training and testing conditions, we used the mean and variance normalization, then we apply auto-regression moving-
average filtering (MVA) in the cepstral domain. The ASR experiments were conducted using two databases, the first 
is LASA digit database designed for recognition the isolated Arabic digits in the presence of different types of noise. 
The second is Aurora 2 noisy speech database designed to recognize connected English digits in various operating 
environments. The experimental results show a substantial improvement from the proposed algorithm over the 
baseline Mel Frequency Cepstral Coefficients (MFCC), the relative improvement is the 28.92% for LASA database 
and is the 44.43% for aurora 2 database. The performance of our proposed algorithm was tested and verified by 
extensive comparisons with the state-of-the-art noise-robust features in aurora 2.  
 
Keywords: Noise-robust feature, Automatic speech recognition, Differential power spectrum, MVA, Aurora2 

1.0   INTRODUCTION 

Robustness with respect to noise is an important issue in automatic speech recognition (ASR) systems. Most of them 
are sensitive to environmental conditions in which they are used. The degradation of the ASR performances is quite 
significant when the mismatch between the training and testing conditions is large. Under realistic noise conditions, 
noise corrupts the speech samples and causes a mismatch due to the  distortion in speech features. Most of ASR 
systems use the common MFCC [1] features as a baseline. However, it is established that the use of MFCC is not 
appropriate  in noisy speech environments. For that reason, several variants of MFCC have been proposed to improve 
the ASR system’s robustness [2, 3]. There are  other methods based on Perceptual Prediction which are better under 
noisy conditions, like perceptual linear prediction (PLP) or relative spectra linear prediction (RASTA-PLP) [4]. The 
latter method applies a RASTA filter, which is mainly attended for convolutive noise. 
 
There are several compensation methods developed to improve the environmental robustness of ASR systems such as 
cepstral mean normalization (CMN) [5], and variance mean normalization (VMN) [6, 7]. Both compensation methods 
are efficient in the presence of quasi-stationary noise. These methods assume that the mean or the mean and variance 
of the cepstral vectors should be the same for all utterances. There is a more effective compensation method called 
(MVA) [8, 9, 10] which combines the two methods namely; CMN and VMN plus ARMA filtring. The MVA technique 
is directly applied as post processing in the cepstral domain. In our approach, we used the MVA technique as an 
integral part of our algorithm and not as post processing phase. Recent works in the literature have shown significant 
progress in robust ASR by applying deep neural network (DNN) [11] and very deep convolutional neural networks 
(CNNs) [12, 13], CNN have shown to provide better performance than traditional DNN.   
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In this paper, we propose a novel noise-robust speech features extraction algorithm that improves the robustness of 
ASR systems. The main contributions of this paper are as follows:   
 
• We use the cepstrum derived from differential power spectrum (DPS) instead of power spectrum for better 

resilience to acoustical distortions.     
• To provide superior robustness, we use the power-law nonlinearity (PLN) functions instead of log nonlinearity 

functions used in MFCC, by suppressing small signals and their variability.  
• We use the MVA technique to alleviate distortion in speech features, it has been shown in [8, 9, 10, 14] that it 

improves significantly the robustness of small-vocabulary ASR tasks. 
• We compare the proposed feature extraction algorithm with a set of robust acoustic features that demonstrate 

appreciable robustness to different type of noise such as: minimum mean-square error (MMSE) spectral amplitude 
estimator [15], Power Normalized Cepstral Coefficient (PNCC) features [16], and Normalized modulation cepstral 
coefficients (NMCC) [17] features.The rest of this paper is organized as follows. In section 2, we present a detailed 
structure of the extraction procedure of the Proposed Noise Robust Features (PNRF). In section 3, we present a 
graphical comparison under different noise levels between our method extraction and chosen front-ends MFCC, 
RASTA-PLP and PNCC. In section 4, we present the experimental results and we conclude with illustrative accuracy 
speech recognition results for state-of-the-art ASR algorithms. In section 5, the work is concluded. 

 
2.0 STRUCTURE OF THE PROPOSED FEATURE EXTRACTION TECHNIQUE 

In this section we present the different processing stages leading to the PNRF coefficients. The structure of PNRF can 
be decomposed in three main phases of processing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Structure of the proposed feature extraction algorithm 
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2.1 Pre-processing Phase 

Fig. 1 shows the structure of The PNRF approach. As in the case of MFCC processing, we apply a pre-emphasis filter 
of the form  𝐻𝐻(𝑍𝑍) = 1 − 0.97𝑍𝑍−1 to input speech signal in the time domain to increase the high frequencies. A short 
time Fourier transform (STFT) is performed using a Hamming window with frame duration of 25.6ms and a frame 
shift of 10ms. DPS of speech signal 𝑥𝑥(𝑡𝑡) is obtained by differentiating the power spectrum with respect to frequency, 
it is defined by  

𝐷𝐷(𝜔𝜔) = 𝑑𝑑𝑑𝑑(𝜔𝜔)
𝑑𝑑𝜔𝜔

                         (1) 

Where 𝜔𝜔 denotes frequency. There are several discrete counterparts for approximating of the formula above; we chose 
….the difference equation given by 

𝑑𝑑(𝑘𝑘) = 𝑥𝑥(𝑘𝑘) − 𝑥𝑥(𝑘𝑘 + 1)                  (2) 

It was shown in [18] that this form of approximation gives better results. Then, an absolute operation is applied to 
DPS to make its negative parts positive. Finally, a normalized filter-bank based on 40 channel gammatone-shaped is 
applied to DPS; the filter-bank is applied between 130Hz and 6800Hz, whose center frequencies are linearly spaced 
in Equivalent Rectangular Bandwidth (ERB) [19]. ERB scale is defined by 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑓𝑓) = 21.4 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 (0.00437𝑓𝑓 + 1)          (3) 

The gammatone modeling widely used is a physiologically motivated technique that may be considered as an 
approximation of human cochlear filter-bank. We use Snaley’s auditory toolbox [20] to get the impulse response of 
gammatone filter. In each channel the area under the squared transfer function is normalized to unity. 

∫ |𝐻𝐻𝑚𝑚(𝑓𝑓)|2𝑑𝑑𝑓𝑓 = 16800
130                  (4) 

Where 𝐻𝐻𝑚𝑚(𝑓𝑓) is the frequency response of the 𝑚𝑚𝑡𝑡ℎ gammatone channel. We obtain the short-time spectral power 
𝑃𝑃(𝑙𝑙,𝑚𝑚) using the squared gammatone summation as below: 

𝑃𝑃(𝑙𝑙,𝑚𝑚) = ∑ ��𝑑𝑑𝑙𝑙(𝑒𝑒𝑗𝑗𝜔𝜔𝑘𝑘)� ∙ 𝐻𝐻𝑚𝑚(𝑒𝑒𝑗𝑗𝜔𝜔𝑘𝑘)�2
�𝐾𝐾2�−1
𝑘𝑘=0          (5) 

𝑙𝑙 frame indices, 𝑑𝑑𝑙𝑙(𝑒𝑒𝑗𝑗𝜔𝜔𝑘𝑘) is the short time spectrum of the 𝑙𝑙𝑡𝑡ℎ frame of the signal, 𝑚𝑚 gammatone channel indices, 𝐾𝐾 
is the discrete Fourier transform size, it is equal to 1024. 
 
2.2 Non-Linerarity and DCT 

Spectral power is enhanced by the expression  

𝑃𝑃𝑁𝑁(𝑙𝑙,𝑚𝑚) = 𝑃𝑃(𝑙𝑙,𝑚𝑚) ∙ 10𝛾𝛾               (6) 

Where 𝛾𝛾 is empirically defined, it is equal to 4. We apply nonlinearity by exploiting the power-law nonlinearity instead 
of log nonlinearity. This technique is supposed to eliminate the weak signals and their variability, it provides more 
robustness to ASR [16]. The nonlinearity is obtained by the following formula 

𝑃𝑃′(𝑙𝑙,𝑚𝑚) = (𝑃𝑃𝑁𝑁(𝑙𝑙,𝑚𝑚))0.1                  (7) 

Fig. 2 illustrates the effect of the power-law non linearity. We observe that the curve of the DSP 𝑃𝑃′(𝑙𝑙, 1) after power-
law non linearity of noisy signal follows same variation of the DSP of clean signal. However, the difference between 
the DSP 𝑃𝑃′(𝑙𝑙, 1) after applying the logarithmic nonlinearity is pronounced in noisy environments. 
Cepstral parameters are obtained from the spectral power 𝑃𝑃′(𝑙𝑙,𝑚𝑚) using the Discrete Cosine Transform (DCT)   

𝐶𝐶(𝑙𝑙, 𝑘𝑘) = �2
𝑀𝑀
∑ 𝑃𝑃′(𝑙𝑙,𝑚𝑚)𝑐𝑐𝑙𝑙𝑐𝑐 �𝜋𝜋𝑘𝑘

𝑀𝑀
�𝑚𝑚 − 1

2
�� 𝑀𝑀

𝑚𝑚=1  ,   𝑚𝑚 = 1⋯𝑀𝑀 ,  𝑘𝑘 = 1⋯𝐾𝐾           (8) 

Where 𝑀𝑀 is the number of gammatone filterbank channels, 𝑀𝑀 and 𝐾𝐾 are identical. 
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(a) 

 

 
(b) 

Fig. 2: Graphical time sequences of the first differential spectral power for the digit string “8375O33” for clean speech 
and for speech corrupted by car noise, a) the first DSP P′(l, 1) after power-law nonlinearity, b) the first DSP after 
applying the logarithmic nonlinearity. 
 
2.3 Mean subtraction, Variance normalization, and ARMA filtering Phase 

The MVA post-processing technique involves three steps, consisting of mean subtraction, variance normalization and 
ARMA filtering. For a given utterance, it can be represented by a 𝑁𝑁 × 𝑇𝑇 matrix of frames, say 𝐶𝐶, where each colomn 
represents the feature vector for a given frame and each row represents the time sequences of a given coefficient.  

�
𝐶𝐶1(1) ⋯ 𝐶𝐶1(𝑇𝑇)
⋮ ⋱ ⋮

𝐶𝐶𝑁𝑁(1) ⋯ 𝐶𝐶𝑁𝑁(𝑇𝑇)
�                                      (9) 

The first step is mean subtraction (MS) defined by 

�̅�𝐶𝑛𝑛(𝑡𝑡) = 𝐶𝐶𝑛𝑛(𝑡𝑡) − 𝜇𝜇𝑛𝑛                                       (10) 

Where 𝐶𝐶𝑛𝑛(𝑡𝑡) is the 𝑛𝑛𝑡𝑡ℎ component of the feature vector at time 𝑡𝑡, �̅�𝐶𝑛𝑛(𝑡𝑡) is the mean subtracted feature and 𝜇𝜇𝑛𝑛 is the 
mean vector estimated from data as 

𝜇𝜇𝑛𝑛 = 1
𝑇𝑇
∑ 𝐶𝐶𝑛𝑛(𝑡𝑡)T
t=1                                            (11) 

The second step is variance normalization (VN) defined by  

�̃�𝐶𝑛𝑛(𝑡𝑡) = 𝐶𝐶�̅�𝑛(𝑡𝑡)
�𝜎𝜎𝑛𝑛

                                                    (12) 

where σd is the variance estimated from data as 

𝜎𝜎𝑛𝑛 = 1
𝑇𝑇
∑ (𝐶𝐶𝑛𝑛(𝑡𝑡) − 𝜇𝜇𝑛𝑛)2𝑇𝑇
𝑡𝑡=1                               (13) 

Where C�n(t)  is the mean-subtracted and variance normalized feature at time t. The third step is the ARMA filtering 
process . It is used as an effective technique for smoothing the speech features in the time domain, with the objective 
of making the noisy frame features  much similar to clean features.  
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In this study we have used non causal ARMA filter, which is defined as  

�̌�𝐶𝑛𝑛(𝑡𝑡) = �
∑ �̃�𝐶𝑛𝑛(𝑡𝑡−𝑖𝑖)+𝑄𝑄
𝑖𝑖=1 ∑ �̃�𝐶𝑛𝑛(𝑡𝑡+𝑗𝑗)𝑄𝑄

𝑗𝑗=0

2𝑄𝑄+1
𝑖𝑖𝑓𝑓𝑖𝑖 < 𝑡𝑡 ≤ 𝑇𝑇 − 𝑖𝑖

�̃�𝐶𝑛𝑛(𝑡𝑡) 𝑂𝑂𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑐𝑐𝑒𝑒
           (14) 

Where 𝑖𝑖 is the order of ARMA filter.The filter structure is based on a study developed in [9], where it has been shown 
that non causal ARMA filter provides better performance to ASR system with respect to other types of filters. We 
apply the MVA to static features which are concatenated with their first and second order time derivatives.  
 
3.0 GRAPHICAL COMPARISON BETWEEN DIFFERENT FEATURES 

The Fig. 3 shows a comparison between time sequences of MFCC, Rasta-PLP, PNCC and PNRF features of the 
utterance of digit string “7936596” corrupted by additive noise at different Signal-to-Noise Ratio (SNR) levels.  Table 
1 contains the configuration of the features used in the graphical illustration. We noticed a sharp degradation of 
baseline MFCC features in the presence of noise; RASTA-PLP and PNCC are more resistant to noise compared to 
MFCC features, whereas PNRF prevails at elevated noise levels. For SNR ≥ 0dB we can clearly see that PNRF is 
better in terms of noise robustness than MFCC, RASTA-PLP and PNCC features. We used the RASTA-PLP and 
PNCC implementation that are available respectively in [21, 22]. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
                                                                 (A)                                                                                (B) 
 
 
 
 
 

 

 

 

 

 

                                                                 (C)                                                                          (D) proposed 

Fig. 3: Graphical time sequences of speech features for the digit string “7936596” , A) MFCC features with MS, B) RASTA-
PLP features with MS, C) PNCC features with MS, D) PNRF features. The first coefficient has been omited for all the 
representations (table 1 shows configuration features).   
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Table 1: Features parameters used for experimental analysis 

Configuration features MFCC RASTA-
PLP 

PNCC PNRF 

Frame length (ms) 25 25 25.6 25.6 

Frame shift (ms) 10 10 10 10 
FFT size 200 256 1024 1024 

Nbr of filter-banks 23 / 40 40 

Nbr of coefficients 12 12 13 13 

Appended log frame 
energy 

do do / / 

Size Δ/ΔΔ window 
(frames) 

3/2 3/2 3/2 3/2 

Feature dimension 39 39 39 39 

 
4.0 EXPERIMENTAL RESULTS 

In this section, we describe the speech databases used for ASR experiments, and then we present the experimental 
results to evaluate speech recognition performances of the PNRF features under a variety of acoustical environments. 
We conducted the experiments using  two speech databases, each of them covers a different ASR topology: LASA 
database is isolated Arabic digit database which was designed for the training and evaluation of ASR algorithms [23]; 
Aurora 2 database is English connected digit recognition task [24]. 
 
4.1 Evaluation on LASA Database 

The speech database contains a set of isolated digit utterances spoken in Arabic, developed by the LASA laboratory. 
It contains 9,000 utterances produced by 90 adult speakers, the vocabulary consists of Arabic digits from 0 to 9. Each 
speaker repeats each digit 10 times. The test set speech corrupted by four background noises taken from the NOISEX-
92 [25] database. Noises are artificially added to the LASA database at different SNR levels, the SNR is defined as 
the ratio of signal to noise energy. Speech database includes two test mode defined as below:     
       
• Test mode A, There are 10 utterances of each digit from each speaker: 6 of them are used for training and 4 

remaining are used for testing, what gives 5,400  utterances for clean training, and 3,600 utterances affected by four 
additive noises (white, pink, factory1 and F16) in range of 7 SNRs values (20, 15, 10, 5, 0, -5dB and Clean) giving 
a total of 100800 (3600 × 4 × 7) test utterances. 
 

• Test mode B, The training set includes 6,000 speech utterances produced by 60 speakers, the test set includes 3,000 
utterances produced by 30 other speakers who have not contributed in the training phase. The same noises as in the 
test A are added to the test set utterances with the 7 level SNRs giving a total of 84000 (3000 × 4 × 7) test utterances.   

 
A recognition system was developed using Hidden Markov Model (HMM) toolkit (HTK) [26], each digit HMM has 
thirteen emitting states with three Gaussian mixtures per state. In all our experiments, acoustic model training is 
performed on clean speech utterances. 
 
Table 2 shows the results obtained with the PNRF features with different orders of the ARMA filter, the optimal order 
of the filter is determined empirically by varying the order until 9. We can see clearly that the optimal value of 𝑖𝑖 is 
the same for both tests mode A and B, the order 𝑖𝑖 = 2 yields the best results, this value gives a good balance between 
noise robustness and information preservation. 
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Table 2: Accuracy percentages on LASA with different orders of the ARMA filter 
 

Filte
r 
orde
r 

Test mode A Test mode B 
clea

n 
20-
0dB 

-
5dB 

clea
n 

20-0dB -5dB 

1 99.2
2 

95.77 67.5
1 

97.4
7 91.70 60.41 

2 99.3
6 

96.02 70.0
2 

97.0
7 91.78 60.84 

3 99.1
9 

95.49 68.8
3 

95.5
7 91.60 60.72 

4 98.7
8 

94.81 65.9
8 

96.8
3 

91.28 62.88 

5 98.7
5 

94.54 66.1
5 

96.4
7 

90.27 61.10 

6 98.6
4 

94.24 64.3
6 

96.0
7 

89.60 60.28 

7 98.6
4 

93.76 62.0
9 

96.2
3 

89.59 59.72 

8 98.2
5 

93.44 63.1
2 

95.8
3 

89.17 57.65 

9 98.0
0 

92.80 61.8
5 

95.0
3 

88.19 56.93 

 
In order to show the performance of PNRF algorithm on the LASA database, comparison is made against the 
extraction methods frequently used in isolated word recognition systems. Tables 3 and table 4 show the detailed 
experimental results obtained in test mode A and test mode B respectively. The table column denoted by ‘Avg 0–
20dB’ expresses the results recognition rate averaged from 0 dB to 20 dB over a four noise types. The fourth column 
of the two tables below contains values of a Relative Improvement (Rel_Imp) of the proposed algorithm extraction 
methods frequently used in ASR systems. Relative improvement is defined as 

𝐸𝐸𝑒𝑒𝑙𝑙_𝐼𝐼𝑚𝑚𝐼𝐼 = 𝑟𝑟𝑝𝑝−𝑟𝑟𝑡𝑡
𝑟𝑟𝑡𝑡

× 100%             (15) 

𝑒𝑒𝑝𝑝 is the recognition rate of our proposed algorithm and 𝑒𝑒𝑡𝑡 is the recognition rate of comparison feature extraction 

methods. 

In test mode A, at the SNR 0-20dB, PNRF with (𝑖𝑖 = 2) achieve an error rate reduction of 21.54% as compared to 
MFCC baseline, 22.67% as compared to RASTA-PLP, 10.28% as compared to MFCC+MVA and 3.22% as compared 
to PNCC feature. In test mode B, at the SNR 0-20dB, PNRF with (𝑖𝑖 = 2) gives 21.22% error rate reduction as 
compared to MFCC baseline, 21.21% as compared to RASTA-PLP, 9.41% as compared to MFCC+MVA and 1.79% 
compared to PNCC feature. PNRF gives a relative improvement over the baseline MFCC of 28.92% in the test mode 
A, and 30.07% in the test mode B. In the clean test, PNRF feature does not affect the performance of the recognition 
like the other features (MVA, RASTA-PLP and PNCC) on the contrary, it yields more performance as the standard 
MFCC features for both test modes.  At very low SNR -5db, the PNRF feature gives a substantial improvement 
accuracy recognition compared to the standard MFCC, more than 42.49% in test mode B and more than 48.76% in 
test mode A. 
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Table 3: Test mode A word accuracy (%) using different feature sets 
 

Features Clean AVG 0-
20dB Rel_Imp -5 dB 

MFCC 99.25 74.48 28.92 21.26 
RASTA_PLP 98.11 73.35 30.90 19.43 

MFCC + CMN 99.00 82.03 17.05 22.12 
RASTA_PLP + 

CMN 98.42 75.73 26.79 19.06 

MFCC + MVN 98.89 85.48 12.33 40.17 
MFCC + MVA 99.00 85.74 11.99 42.79 

PNCC 98.34 92.80 3.46 58.47 
PNRF  (ord2) 99.36 96.02 − 70.02 

Table 4: Test mode B word accuracy (%) using different feature sets 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
4.2 Evaluation on AURORA 2 Database 

Aurora 2 database contains a set of continuous digit strings spoken in English; it contains two training modes: clean 
condition training and multi-condition training. The first mode uses clean speech data only for acoustic model training, 
while the second mode uses both clean and noisy speech data for acoustic model training. The training data contain 
8440 utterances spoken by 110 adult speakers. Test data contain 4,004 utterances spoken by 104 author speakers who 
have not contributed in the training phase. Database contains 3 test sets: test set A, test set B and test set C. The first 
two test sets are corrupted by 4 different types of noise, where different noises have been artificially added. The last 
test set is corrupted by 2 types of noise. The speech and the noise signals are filtered with 
a G.712 frequency characteristic except the signals of test set C filtered with the MIRS (modified intermediate 
reference system) characteristic before adding the two types of noise ( see table 5). 

In our experiments, we use HMM model with the same configuration as [24]. Each digit HMM has 16 emitting states 
with three Gaussian mixtures per state. Silence and short pause models have three and one stat respectively, with six 
Gaussian mixtures per state.  

 

 

 

 

 

 

 

 

 

 

 

Features Clean AVG 0-
20dB Rel_Imp -5 dB 

MFCC 96.63 70.56 30.07 18.35 
RASTA_PLP 97.23 79.57 15.34 21.65 

MFCC + CMN 97.67 82.00 11.92 36.27 
RASTA_PLP + 

CMN 95.43 76.57 19.86 23.50 

MFCC + MVN 95.40 80.07 14.62 25.26 
MVA 97.43 82.36 11.43 38.99 
PNCC 95.29 89.99 1.99 55.73 

PNRF  (ord2) 97.07 91.78 − 60.84 
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Table 5: A summary description of Aurora 2 database 

Training 
data 

Clean condition 
training Training utterances: 8,440  

multi-condition 
training 

8,440 training utterances are split into 20 subsets with 422 
utterances in each subset. 
Additive noises: suburban train, babble, car, and exhibition hall. 
SNR levels: clean, 20 dB, 15 dB, 10 dB and 5 dB. 

Test set  
 
 

Set A 
Test utterances: 28,028 
Additive noises: babble, car, suburban train, and exhibition hall  
SNR levels: clean, 20 dB, 15 dB, 10 dB, 5 dB, 0 dB and -5 dB. 

Set B 
Test utterances: 28,028 
Additive noises: street, restaurant, airport and train station 
SNR levels: clean, 20 dB, 15 dB, 10 dB, 5 dB, 0 dB and -5 dB. 

Set C 
Test utterances: 14,014 
Additive noises: suburban train and street 
SNR levels: clean, 20 dB, 15 dB, 10 dB, 5 dB, 0 dB and -5 dB. 

 

Table 6 shows the effect of ARMA filter order on the recognition accuracy for Aurora 2 database obtained with clean 
training condition. We changed the order 𝑖𝑖 of the non causal ARMA filter until 9.  
We note that, small 𝑖𝑖 gives better recognition performance in clean test subset, because it preserves the short-term 
cepstral information. However, it gives bad performance in noisiest test subset (-5dB), because the short-term cepstral 
information is more sensitive to noise. The reverse is true. The best performance of the system has been obtained with 
order 𝑖𝑖 = 6, this value establish a good balance between information preservation and noise robustness.  
 
For clean set, accuracy rate is 99.11%. At Avg 0-20, the average accuracy rate is 85.33%, which is very encouraging. 
At the SNR -5 dB accuracy recognition rate is 27.42%.  
 

Table 6: Accuracy percentages on aurora 2 with different orders of the ARMA filter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7 shows that PNRF performs very well in the case of speech corrupted by car noise, which present some 
stationarity. The average recognition rate for the three test sets is given by the last column. 
 

 
 
 
 
 
 
 
 

Filter 
order Clean Avg 0-20db -5 db 

2 99.29 81.20 16.88 
3 99.24 81.52 17.86 
4 99.21 81.81 17.72 
5 99.15 84.37 21.80 
6 99.11 85.33 27.42 
7 98.91 85.44 29.27 
8 98.77 85.72 32.41 
9 98.49 85.02 32.59 
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Table 7: Detailed recognition rate (%) for the PNRF feature (𝑖𝑖 = 6) for aurora 2 database 

 Set A Set B Set C  
 Subwa

y 
Babbl

e 
Car Exhibitio

n 
Restaura

nt 
Stree

t 
Airpor

t 
Statio

n 
Subwa

y 
Stree

t 
Avg 

Clea
n 

99.23 98.97 99.0
2 

99.35 99.23 98.97 99.02 99.35 99.14 98.79 99.1
1 

20dB 97.36 97.73 97.6
4 

97.19 98.07 97.40 98.18 98.18 97.21 97.10 97.6
1 

15dB 95.67 96.13 96.4
8 

95.46 96.04 95.95 96.54 96.70 95.36 95.59 95.9
9 

10dB 91.25 93.02 93.8
6 

91.24 91.71 92.44 93.77 93.18 90.08 91.41 92.2
0 

5dB 80.26 80.89 88.3
4 

78.65 77.89 82.01 84.25 83.77 79.24 81.53 81.6
8 

0dB 55.05 52.72 75.4
8 

58.35 48.94 61.12 62.21 63.10 54.16 60.43 59.1
6 

-5dB 23.83 18.35 42.3
8 

28.88 17.47 30.32 26.78 33.23 23.30 29.66 27.4
2 

Avg 
0–

20dB 

83.92 84.10 90.3
6 

84.18 82.53 85.78 87.00 86.99 83.21 85.21 85.3
3 

 
4.3 Comparison With Other Methods  

In order to evaluate the effectiveness of the proposed algorithm, several comparisons are made against the MFCC 
baseline [1], RASATA-PLP [4], MFCC+MVA [10] and minimum mean-square error (MMSE) spectral amplitude 
estimator [15]. We added to our comparison two newly effective techniques [27, 28], the first technique denoted 
(TECH1) proposes the implementation of the 2D psychoacoustic models to MFCC features and the second technique 
denoted (TECH2) investigates the distribution of Mel-filtered log-spectrum of speech signals in noisy environments.  
 

Table 8: Recognition results for state-of-the-art ASR algorithms (%) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*: the value was not mentioned by the author in [17]. 
 
Table 8 presents the advantages of the proposed algorithm compared to other comparison targets, it shows statistical 
results in terms of recognition accuracy rates (%) with the different methods. The proposed algorithm PNRF gives 
better recognition rate for SNR for Avg 0-20 dB and -5dB. Even for clean set, accuracy rate is higher than 99%. At 
Avg 0-20 dB, the relative improvements are 44.43% over MFCC+CMN, 24.99% over RASTA-PLP+CMN, 7.85% 
over MFCC+CMVN, 6.5% over MMSE, 2.93% over PNCC, 2.06% over MFCC+MVA, 1.12% over TECH1 and 
0.52% over TECH2. 

SNR(dB) Clean Avg 0-
20dB Rel-Imp -5dB 

MFCC + CMN 98.89 59.08 44.43 8.74 
RASTA-PLP + 
CMN 98.93 68.27 24.99 10.24 

MFCC + CMVN 99.29 79.12 7.85 14.93 
MMSE 99.26 80.12 6.50 20.31 
PNCC 99.32 82.90 2.93 18.13 
MFCC + MVA 99.20 83.60 2.06 24.50 
NMCC 99.09 83.83 1.79 * 
TECH1 99.26 84.38 1.12 24.73 
TECH2 99.20 84.89 0.52 24.70 
PNRF 
(proposed) 99.11 85.33 − 27.42 
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For the SNR -5 dB, our proposed algorithm performs better than all algorithms, the improvements are much more 
significant, 18.68% over MFCC-CMN, 17.18% over RASTA-PLP+CMN, 9.29% over PNCC, 7.11% over MMSE 
and 2.92% over MFCC+MVA. 
 
We see well that, the proposed algorithm has a major contribution compared to the target algorithms, more especially, 
in the noise interest interval which varies between 0 and 20dB. 
 
5.0 CONCLUSION 

In this paper, a new cepstral features have been proposed by introducing a differential power spectrum and power-law 
nonlinearity that replaces the existing technique of log nonlinearity used in MFCC processing. The proposed feature 
used the MVA technique as an integral part of the algorithm and not as post-processing phase. It was verified that the 
effectiveness of the proposed feature depends on the choice of ARMA filter order, the optimal order of the latter is 
equal to 2 for the recognition of the isolated digits and 6 for the recognition of the connected digits. According to the 
experimental results conducted on the Aurora 2 and LASA database, the proposed feature provides a significant 
improvement in robustness, it outperforms state-of-the-art algorithms in noisy environments without losing 
performance in clean environment as well. The proposed feature is effective and slightly greater computational cost 
than baseline MFCC processing. It can be used easily in real-time embedded systems.  The future work seeks to 
experiment our algorithm on large vocabulary ASR databases such as DARPA Wall Street Journal. 
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