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ABSTRACT 

Image stitching combines multiple overlapping scenes into a panorama. It can be applied in video stitching, super-
resolution, and medical imaging. Post-processing routines such as exposure compensation, seam line adjustment, 
and blending are often performed to increase its visual appeal. Our aim is to increase the registration accuracy 
between adjacent image pairs in a stitching algorithm. This is done by adding an area-based registration step, 
namely Enhanced Correlation Coefficient (ECC), which refines the original feature-based image registration. The 
performance of registrations in the stitching algorithm is evaluated using root-mean-squared error of control points, 
structural similarity index, and universal image quality index. The Boat and Graffiti datasets from the Oxford 
Robotics Database are used for experiments. It is found that ECC largely improves registrations in stitching except 
for a slight increase in root-mean-squared error of control points in the Boat dataset. In addition, ECC’s 
enhancement makes the registration outperform the ground truth in one image of both datasets. 

Keywords: Image registration, Image stitching 

 

1.0 INTRODUCTION 

Image stitching is the compositing of a set of images into a panorama [1]. It is used in generation of photo spheres, 
photo mosaics, and image stabilisation. The first step of a generic algorithm is to detect and describe features in each 
image. These features are matched between overlapping images. Then, the homography between adjacent images is 
estimated through Random Sample Consensus (RANSAC) [2] or Maximum Likelihood Estimation Sample 
Consensus (MLESAC) [3]. 

Post-processing routines are applied to the composited images to make the panorama more visually appealing. For 
example, bundle adjustment is applied to refine the camera parameters which may have accumulated errors from the 
concatenation of pairwise homographies. Exposure differences between image pairs are compensated by applying 
colour correction. Besides that, the seam line between images is adjusted to minimise its visibility. Lastly, the 
images are blended and projected into a composite surface once all post-processing adjustments have been made [4]. 

Our paper’s objective is to increase the accuracy of image registrations in stitching. This increase in accuracy leads 
to less ghosting issues for post-processing routines. In addition, it contributes to more structural similarity, quality, 
and registration accuracy between overlapping regions of images. 

Our stitching algorithm takes a set of images as input. Feature detection, description and matching is performed 
between each image and the next. After that, a geometric transformation and inliers are computed from the matched 
points. These transformations are concatenated to compute transformations relative to the first image. The output 
limits of each transform is used to determine the centre image of the panorama. 

The surface of the panorama into which all images are mapped is created. The size of the panorama is computed by 
finding the output limits over all transformations. Finally, the transformations map and overlay images together on 
the surface of the panorama. 

Our experimental protocol involves datasets from the Oxford Robotics Database, namely the Graffiti and Boat 
datasets which test for affine and scale change respectively [5]. Traditional evaluation metrics such as structural 
similarity [6] and image quality index [7] are used to quantify the quality of registrations in the stitched panorama. 
Additionally, the root-mean-squared-error of control points is computed between registered images to assess its 
accuracy [8]. The Maximally Stable Extremal Regions (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) [9], Speeded-Up Robust Features (𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠) [10], and 
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Harris (ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚) [11] detectors and 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 descriptor are chosen as the feature-based image registration methods for 
the datasets. 

The novelty of our approach lies mainly in the use of ECC [12] as the area-based image registration refinement 
method. The number of iterations for ECC is set to the default setting of 15 iterations. It is predicted that ECC’s 
refinement on registrations increases the structural similarity, quality, and registration accuracy between adjacent 
images. This is amplified by the cumulative nature of alignments as more images are added for stitching. 

The following sections are structured as follows: Section 2 provides a literature review of related works with 
explanations on the research gap and similarities with other works. Section 3 details each step in the process of our 
proposed stitching algorithm and the experimental protocol employed. Section 4 shows the results of our approach 
compared with benchmark algorithms in two widely-used image registration datasets. Section 5 gives justifications 
for experimental results and possible improvements in experimental design. Section 6 summarises the findings of 
our investigation, possible improvements in the experimental protocol, and applications of this study. 
 
2.0 LITERATURE REVIEW 
 
With the ever increasing hardware processing power of recent times, the relevance of our accuracy refinement 
approach cannot be overstated as it could fill a gap in research by increasing registration accuracy in stitching for 
applications in medicine, remote sensing, and motion estimation. 

Several recent approaches have used ECC for registration in the medical field. A paper used Arterial Spin Labelling 
Magnetic Resonance Imaging (ASL MRI) to measure perfusion in kidneys. In this work, the affine version of ECC 
was used to coregister ASL, equilibrium magnetisation (M0), and relaxation time (T1) maps [13, 14]. 

Aside from that, ECC was used as the similarity measure between adversarial and original images in a recent work 
on data augmentation where Perceptive Adversarial Similarity Score (PASS), hard positive generation, and a diverse 
set of adversarial perturbations were introduced [15]. 

Besides that, the feature-based methods which we use as benchmarks in experiments are well known and widely 
used in current literature. For example, improved 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 was proposed as a way to stitch varied scenes quickly. They 
used Support Vector Machines (SVM) to simplify matching [16]. The robustness of this approach to handle scene 
variability can be improved by our proposed approach of ECC refinement. Multimodal image stitching in the 
agricultural sector was investigated with the aim of weed control [17]. The location of the weeds can be triangulated 
more accurately if the registration is enhanced with ECC. 

A high performance stitcher was created using the Oriented Fast and Rotated Brief (ORB) feature detector and 
Exposure Compensation blending [18]. ECC refinement can potentially increase ORB’s accuracy seeing that it has 
high efficiency but lacks high accuracy. A real-time stitching algorithm was proposed using ORB and Progressive 
Sampling Consensus (PROSAC) to reduce non-randomness in the sampling procedure [19]. Their selected feature-
based approach (ORB) can be enhanced with our proposed ECC refinement algorithm. 

A study with the aim of increasing the field of view of fundus images was carried out using a combination of the 
weber descriptor and seamless blending [20]. Our proposed ECC refinement approach can provide the high accuracy 
usually required for detailed analysis in the medical field. Image stitching was performed in an automotive vehicle 
using multiple monitors to solve the problem of blind spots in rear-view mirrors [21]. They used 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 and Haar 
wavelet transform to stitch the images. Our enhancement approach may increase the accuracy of stitching, thereby 
reducing the possibility of ghosting issues. This in turn would reduce the chances of a car accident. 

We chose to compare the registration performance of our proposed stitching approach with the 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 detector, 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 
descriptor, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 detector, and ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 detector because they are still widely-used either as benchmark algorithms or 
part of the solution in recent papers. 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 was used to detect global control points before local matching using 
diffeomorphic Demons. This was done with the aim of handling general and nonlinear deformation during image 
registration [22]. Brain tissue slice registration was investigated by first performing Wavelet-based Edge Correlation 
(WEC) for detection before using the 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠  descriptor. After that, matching was performed considering local 
constraints [23]. In order to solve the problem of low feature matches, Random Resample Consensus (RANRE-SAC) 
was proposed to regenerate matches. The texture component of the 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 descriptor was used to make their approach 
robust to noise [24]. 

An approach tackling nonlinear changes in remote sensing images evaluated three state-of-the-art descriptors. They 
also proposed OSURF for colour images, which is a combination of the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 detector and the 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 descriptor [25]. 
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In an investigation comparing the performance of region and interest point detectors, the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  detector was 
compared with the 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 detector. Their suitability in the presence of global and local distortion was studied [26]. 
Multispectral registration was improved when the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 detector was used on an edge-enhanced image. They used 
the original 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 detector as one of their benchmark algorithms [27]. 

In a study on image change detection, images from the same region but different times were registered using the 
ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 detector and the sift descriptor. After that, the difference image was extracted and its dimension was reduced 
using Principal Component Analysis (PCA). The feature vector space was classified using hybrid genetic fuzzy C-
means (FCM) algorithm before being compared with the reference image [28]. The registration of cadastral images 
was investigated by first using ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚  to perform feature detection. Then, RANSAC was used to estimate the 
geometric transformation before stitching [29]. In crack image matching, the uneven lighting in images were first 
reduced using Mask Dodging. After that, the noise was removed and the binary image was extracted. ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 was 
used for feature detection before image matching using Hausdorff distance [30]. 

In order to justify the usage of selected feature-based registration algorithms as benchmarks, we present the state of 
the art feature-based image registration algorithms being used for various state of the art image stitching research 
works in Table 1. 

A direct comparison with the image stitching problems in Table 1 is non-valid since the goal of the paper is to pro-
pose the usage of an additional area-based registration refinement step, namely ECC, in a standard image stitching 
framework. This is done to improve the image stitching performance by way of improving the registration accuracy 
between adjacent images of a dataset. Thus, comparison with state of the art feature-based image registration 
approaches is sufficient to demonstrate the effectiveness of our proposed approach. 

Table 1. Feature-based image registration methods and their usage in image stitching papers. 

Feature-based method Image stitching paper 

𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 Multimodal Image Stitching Algorithm for Weed 
Control Applications in Organic Farming by Holtorf 

et. al. 2016 [17] 

Seamless Image Stitching Using Structure 
Deformation with HoG Matching by Lee et. al. 2015 

[41] 

An Adaptive Image-stitching Algorithm for an 
Underwater Monitoring System by Li et. al. 2014 

[37] 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 Real Time Image Mosaicing System Based on 
Feature Extraction Techniques by Adel et. al. 2014 

[42] 

Image Stitching System Based on ORB Feature-
Based Technique and Compensation Blending by 

Adel et. al. 2015 [18] 

Research on Image Matching Technology for the 
Spherical Stereo Vision by Zhang et. al. 2015 [43] 

ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 Image Registration and Mosaicking Based on the 
Criterion of Four Collinear Points by Jinwei et. al. 

2016 [35] 

An Image Registration Method For Engineering 
Images by Jiang and Lin 2016 [29] 

Image Mosaic Algorithm Based on the Combination 
of Harris and Edge Extraction by Zhihong and 

Songming 2016 [34] 
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On another note, there are many approaches which are conceptually similar to our approach. We aim to identify the 
similarities and differences with these approaches in the following paragraphs. Shunzhi proposes a hessian 
algorithm which combines grayscale image matching with feature-based detection [31]. This results in more 
matches and a quicker search for matches. It is similar to our approach in that it aims to increase registration 
accuracy by finding more accurate feature locations. However, it seeks to refine feature point locations whereas our 
algorithm aims to refine the geometric transformation. 

Bae suggests a piecewise 3D registration approach. Each image can be treated as a 2D segment defined by features 
[32]. Then, the segments are stitched together based on their inclination in 3D space. It seeks to find a geometric 
relationship between images. It differs in that it uses feature segments in 3D instead of 2D features used in our 
algorithm. 

Improvement in stitching of digital radiography X-ray images is proposed by Yang [33]. First, the images are 
downsampled to reduce computation time. The overlap region is identified through improved phase correlation. This 
region is evaluated using the correlation coefficient which is the basis for ECC in our algorithm. Our approach 
utilises feature-based image registration to recognise overlap regions instead of phase correlation. 

A mosaicking algorithm which combines Canny edge detection and ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 corner extraction is proposed by Zhi-
hong [34]. The corners are locally optimised before NCC and RANSAC. Lastly, image fusion’s weighted average 
method is used. It uses feature-based and area-based methods for registration. Our algorithm utilises a combination 
of a feature-based image registration method and ECC. In contrast, they use Canny, ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and NCC. 

Jinwei proposes to refine feature points for robust feature matching in image stitching [35]. Firstly, ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 corners 
are detected. Collinear point sets which are larger than four points are extracted using the Cross-Ratio criterion. Four 
groups of points from this set is used to compute the homography. Results show that this approach makes it robust 
to a high number of mismatches. It seeks to refine the registration method. Our approach refines the homography 
instead of feature points. 

A fast image registration algorithm based on block processing and iterative improvement is proposed by Han [36]. 
In the same way, ECC is iterative in its refinement and relies on a good initialisation. We use feature-based image 
registration rather than block processing. 

Hengyu suggests using 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 to stitch images if the number of features are larger than a threshold [37]. Otherwise, 
the phase correlation method is used. Our approach uses the 64-dimension 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 as the feature descriptor. They use 
different modes of stitching based on the situation. In contrast, we integrate both feature-based and area-based 
methods. 

A mosaicking algorithm for visual sensor networks is proposed by Yi-qin [38]. The overlap regions are first 
identified with the strip search algorithm to reduce its complexity. Image registration is performed using block 
search. The registration is refined with improved absolute difference value sum algorithm. It is similar to our 
approach in that it suggests a refinement of image registration. However, our algorithm uses ECC for refinement. 

Xingxing proposes using Location Sensitive Hashing to accelerate feature matching [39]. The algorithm uses 
Euclidean distance ratio and median filter to produce a stable homography. This is like our algorithm which aims to 
enhance the homography. They seek to speed up the stitching process while we aim to improve the registration 
accuracy. 

A multiresolution approach integrating both feature-based and area-based registration is proposed by Xianyong [40]. 
It utilises block matching, a low contrast filter, and RANSAC to refine feature matches. This is similar to our 
approach of combining feature-based and area-based methods. However, we use ECC for refinement and MLESAC 
for transformation estimation. 

3.0 METHODOLOGY 

3.1 Proposed Stitching Algorithm 

The image stitching algorithm is based on MATLAB’s automatic feature-based panoramic image stitching frame-
work from the computer vision system toolbox as shown in Fig. 1 where I and T are the image and transformation 
matrix respectively. Subscript n is the image order and starts from the value of two. It can handle uncallibrated 
cameras. Hence, it is assumed that there is no lens distortion in the images. 
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Fig. 1. Flowchart of image stitching algorithm with ECC refinement. 

After the images are loaded, feature-based image registration is applied sequentially on the images starting from the 
first image. Detectors that are considered include 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 , and ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 . The 64-dimension 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠  is used to 
describe the detected interest points. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is a blob detector. It detects covariant regions which are stable connected components on some level sets of an 
image. In other words, the detected regions stay similar even when different intensity thresholds are applied. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
can be either brighter or darker than their outer boundary. Rejection criteria include the allowable range and 
variation of its area. 

Wavelet responses in a 20s×20s neighbourhood is computed around a detected keypoint, where s is a predefined 
pixel size. After that, 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 divides the region into 4×4 subregions where each subregion is a 4-element vector as 
shown in Eq. 1. It uses the trace of Hessian to only match descriptors with the same contrast type i.e. bright blobs on 
dark backgrounds or vice versa. 

𝑣𝑣 = ��𝑑𝑑𝑥𝑥 ,�𝑑𝑑𝑦𝑦 ,�|𝑑𝑑𝑥𝑥| ,��𝑑𝑑𝑦𝑦��                                                                     (1) 

Feature matches are exhaustively searched by computing the sum of squared differences, 𝑆𝑆𝑆𝑆𝑆𝑆, between both feature 
vectors. To determine the uniqueness of a match, a distance ratio, 𝑑𝑑, as defined in Eq. 2 is utilised, where 𝑠𝑠1, 𝑠𝑠2, and 
𝑠𝑠2′ are the reference image feature, best target image feature match, and second best target image feature match 
respectively. If 𝑑𝑑 is close to one, a match is ambiguous. If 𝑑𝑑 is close to zero, it is considered unique. In addition, if 
the 𝑆𝑆𝑆𝑆𝑆𝑆 is larger than a predefined matching threshold, it is considered a false positive. 

𝑑𝑑 =
𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠1, 𝑠𝑠2)
𝑆𝑆𝑆𝑆𝑆𝑆(𝑠𝑠1, 𝑠𝑠2′)

                                                                                   (2) 

MLESAC uses feature matches to compute the geometric transformation and inliers. It estimates putative solutions 
by maximising likelihood. Then, it performs parameterisation through constrained optimisation. 

Transformation matrices spatially transform coordinates of a target image from (𝑥𝑥, 𝑦𝑦) to (𝑠𝑠, 𝑣𝑣) based on a motion 
model. The projective model, which preserves straight lines, is used for this algorithm. Eq. 3 shows components of a 
homography matrix in homogeneous form. 𝑎𝑎 and 𝑚𝑚 control scale. 𝑔𝑔 and ℎ are responsible for translation. 

�
𝑠𝑠
𝑣𝑣
1
� = �

𝑎𝑎 𝑑𝑑 𝑔𝑔
𝑏𝑏 𝑚𝑚 ℎ
𝑐𝑐 𝑠𝑠 1

� �
𝑥𝑥
𝑦𝑦
1
�                                                                               (3) 

The formula for rotation of 𝜃𝜃 degrees is defined in Eq. 4. 

�
𝑐𝑐𝑐𝑐𝑚𝑚 𝜃𝜃 𝑚𝑚𝑎𝑎𝑠𝑠 𝜃𝜃 0
−𝑚𝑚𝑎𝑎𝑠𝑠 𝜃𝜃 𝑐𝑐𝑐𝑐𝑚𝑚 𝜃𝜃 0

0 0 1
�                                                                       (4) 

 

Input images 
𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑛𝑛−1, 𝐼𝐼𝑛𝑛  

Detect, describe, and 
match features between 

𝐼𝐼𝑛𝑛 and 𝐼𝐼𝑛𝑛−1 

Estimate 
transformation 𝑇𝑇𝑛𝑛  

between 𝐼𝐼𝑛𝑛 and 𝐼𝐼𝑛𝑛−1 

Refine 
transformation 𝑇𝑇𝑛𝑛 

with ECC 

Compute transformation 
𝑇𝑇1 ∗ 𝑇𝑇2 ∗ … ∗ 𝑇𝑇𝑛𝑛−1 ∗ 𝑇𝑇𝑛𝑛 

between 𝐼𝐼𝑛𝑛 and 𝐼𝐼1 

Centralise, initialise and 
create panorama 
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(a) (b) (c) 

(d) (e) (f) 

 

Then, the pairwise transformation is refined by forward-additive ECC. Implementation for ECC is taken from the 
Image Alignment Toolbox (IAT). Firstly, the normalised reference image vector, 𝚤𝚤𝑟𝑟� , is computed using its zero-
mean vector, 𝚤𝚤𝑟𝑟� , as shown in Eq. 5. 

𝚤𝚤𝑟𝑟� =
𝚤𝚤𝑟𝑟�
‖𝚤𝚤𝑟𝑟�‖

                                                                                        (5) 

The mapping function is defined as 𝜙𝜙�𝑥𝑥: 𝑝𝑝𝑗𝑗−1� where 𝑥𝑥 and 𝑝𝑝0 are the reference image coordinates and initial warp 
respectively. 𝑗𝑗 is set to one for the first iteration. The Jacobian, �̅�𝐺�𝑝𝑝𝑗𝑗−1�, is computed from this mapping function. 
After that, the zero-mean of the warped image vector, 𝚤𝚤𝑤𝑤����𝑝𝑝𝑗𝑗−1�, is computed. 

𝚤𝚤𝑟𝑟𝑡𝑡�𝚤𝚤𝑤𝑤��� is compared with 𝚤𝚤𝑟𝑟𝑡𝑡�𝑃𝑃𝐺𝐺𝚤𝚤𝑤𝑤��� where 𝑃𝑃𝐺𝐺 = �̅�𝐺�𝐺𝐺𝑡𝑡����̅�𝐺�−1𝐺𝐺𝑡𝑡���. The result of this comparison determines the computation 
method for Δ𝑝𝑝𝑗𝑗 . Finally, the warp is updated as shown in Eq. 6. The algorithm is terminated by setting the maximum 
number of iterations, 𝑗𝑗𝑚𝑚𝑚𝑚𝑥𝑥 , and a predefined Mean-Square-Distance threshold, 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 , for �Δ𝑝𝑝𝑗𝑗�where 𝑗𝑗𝑚𝑚𝑚𝑚𝑥𝑥 = 15 
and 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 = 1 pixel2 as suggested in [12]. 

𝑝𝑝𝑗𝑗 = 𝑝𝑝𝑗𝑗−1 + Δ𝑝𝑝𝑗𝑗                                                                           (6) 

Refined pairwise transformations between adjacent images are concatenated to compute the transformation relative 
to the first image. 

Transformations are modified by making the centre image the least distorted one. This is done by inverting the 
centre image transformation and applying to the other transformations. The centre image can be found through the 
output limits of each transformation. An empty panorama is initialised. Its size is determined by computing the 
maximum and minimum output limits over all transformations. Lastly, the transformations are used to map and 
overlay images together into the panorama. 

3.2 Experimental Protocol 

  

   

  

   

Fig. 2. Images from the Boat dataset. (a) is the reference image. (b) - (f) are target images to be registered to the 
reference image. 

We selected state of the art feature-based image registration approaches, namely the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 , and ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 
detector paired with the 64-dimension surf descriptor, as benchmark algorithms in our experiments. 

The performance of the image stitching algorithms are evaluated using three metrics, namely root-mean-squared 
error of control points, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, structural similarity index, 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚, and universal image quality index, 𝑄𝑄. The overlap-
ping region between the reference and the target image is evaluated for all metrics. The Boat and Graffiti dataset as 
shown in Fig. 2 and Fig. 3 are used. 
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(d) 

(a) 

(e) 

(c) (b) 

(f) 

Root-mean-squared error of control points, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, evaluates the registration accuracy between two images. It is 
computed by first selecting n ground truth control points in the reference image and target image using the ground 
truth homography provided along with the datasets. Then, the distance from ground truth produced by the estimated 
transformation is computed according to Eq. 7 where 𝑚𝑚 is the Euclidean distance error of corresponding points. 𝑠𝑠 is 
set to 20 as is employed in [44] and [8]. 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �∑ 𝑚𝑚𝑖𝑖2𝑛𝑛
𝑖𝑖=1

𝑠𝑠
                                                                                 (7) 

Structural similarity index, 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚, considers luminance, contrast, and structural information between images 𝑥𝑥 and 𝑦𝑦. 
It is defined as shown in Eq. 8 where 𝜇𝜇 , 𝜎𝜎 , and 𝜎𝜎𝑥𝑥𝑦𝑦  are the mean, standard deviation, and cross-covariance 
respectively. 𝐶𝐶1  and 𝐶𝐶2  are regularisation constants for when the local mean or standard deviation of an image 
region is close to zero. 

𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚(𝑥𝑥,𝑦𝑦) =
�2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦 + 𝐶𝐶1��2𝜎𝜎𝑥𝑥𝑦𝑦 + 𝐶𝐶2�

�𝜇𝜇𝑥𝑥2 + 𝜇𝜇𝑦𝑦2 + 𝐶𝐶1��𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝐶𝐶2�
                                                 (8) 

Universal image quality index, Q, factors in correlation, luminance, and contrast between images �̅�𝑥  and 𝑦𝑦� . Its 
formula is shown in Eq. 9 where 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦 are considered contrast estimates. 

𝑄𝑄 =
4𝜎𝜎𝑥𝑥𝑦𝑦�̅�𝑥𝑦𝑦�

�𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2�[(�̅�𝑥)2 + (𝑦𝑦�)2]
                                                               (9) 

  

   

  

   

Fig. 3. Images from the Graffiti dataset. (a) is the reference image. (b) - (f) are target images to be registered to the 
reference image. 

4.0 RESULTS 

The following sections describe results obtained from the Boat and Graffiti datasets. For each dataset, the root-
mean-squared error of control points, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, structural similarity index, 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚, and universal image quality index, 𝑄𝑄 
between img1 and target images are computed. The subscript −𝑚𝑚𝑐𝑐𝑐𝑐 indicates that the original algorithm is used. 
Subscript +𝑚𝑚𝑐𝑐𝑐𝑐 means that the algorithm refined with ECC is used. 𝑇𝑇𝑚𝑚𝑠𝑠 is the error generated by the ground truth 
homography. The average error across all images is computed to represent the overall performance of an algorithm. 

4.1 Boat 

Table 2 indicates that the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 increases by 0:0875% overall with ECC for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. The error is reduced by at least 
half in img4 and img5. However, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in img2 increases by half. The error in img6 increases twofold. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in 
img3 is increased by 0:0412%. In 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , ECC increases the structural similarity by 1:7812% overall. This 
performance improvement occurs in all target images. 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟+𝑚𝑚𝑒𝑒𝑒𝑒  surpasses 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚  by 0.0171 points in 
img2. The overall ssim produced by the ground truth homography is 15.3533% higher than the original algorithm. 
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With ECC refinement, Q increases by 1.6373% overall while it decreases by 0.0297% in img3 for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 
is 17.2872% higher than 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟−𝑚𝑚𝑒𝑒𝑒𝑒  across all images, which indicates high potential for improvement. 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟+𝑚𝑚𝑒𝑒𝑒𝑒 
outperforms 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 by 0.0161 points in img2. 

𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 ’s 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  is increased marginally by 0.0205% overall after ECC (Table 2). However, more target images 
experience positive effects, namely img2, img4, and img5. In contrast, only img3 and img6 are adversely affected. 
The overall 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 of 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 is increased by 1.3333% with ECC. This is largely due to the positive effect on img2 
which experiences an increase of almost 7%. img4 also reaps benefits from ECC. The images which experience a 
decrease in 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 are img3, img5, and img6. With ECC, the 𝑄𝑄 of 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 is increased by 1.2415% overall. img2 and 
img4 experience increases in 𝑄𝑄 while the opposite occurs in img3, img5, and img6. The overall positive effect on 𝑄𝑄 
is mostly due to the large increase in 𝑄𝑄 for img2 by 6:2037%. The increases in 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠’s 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 after ECC makes 
it surpass the ground truth performance in img2 by more than two points. The ground truth performance presents a 
potential improvement of about 15% in 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠’s 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 compared to the original algorithm. 

According to Table 2, the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 of ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 is increased by 0:0468% overall after ECC. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 decreases occur in 
img4 and img5 while the opposite occurs in img2, img3, and img6. With ECC, ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚’s 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 increases by 0.1933% 
overall. Positive effects occur in img2, img5, and img6. Adverse effects occur in img3 and img4. ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚’s 𝑄𝑄 
improves overall by 0.1664% after ECC. img2, img5, and img6 experience benefits in 𝑄𝑄 while the opposite happens 
to img3 and img4. ECC positive effect on 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 allows it to outperform the ground truth by more than two 
points in ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚. The ground truth performance is about 14% higher than that of the original algorithm. 

Table 2. The 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚, and 𝑄𝑄 of original (−𝑚𝑚𝑐𝑐𝑐𝑐), refined (+𝑚𝑚𝑐𝑐𝑐𝑐), and ground truth homography (𝑇𝑇𝑚𝑚𝑠𝑠) using the 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠, and ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 feature-based image registration methods in the Boat dataset. 

 Target image 
img2 img3 img4 img5 img6 Average 

 

Feature 
  
        

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟−𝑚𝑚𝑒𝑒𝑒𝑒  0.0004 17.8894 0.0007 0.0002 0.0039 3.5789  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟+𝑚𝑚𝑒𝑒𝑒𝑒  0.0006 17.8968 0.0003 0.0001 0.0125 3.5821  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟−𝑚𝑚𝑒𝑒𝑒𝑒  0.6837 0.4766 0.7175 0.8277 0.8788 0.7169  
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟+𝑚𝑚𝑒𝑒𝑒𝑒  0.7415 0.4768 0.7189 0.8309 0.8800 0.7296  

 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚  0.7244 0.7841 0.8375 0.9012 0.8875 0.8269  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟−𝑚𝑚𝑒𝑒𝑒𝑒  0.7236 0.4680 0.7124 0.8273 0.8771 0.7217  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟+𝑚𝑚𝑒𝑒𝑒𝑒  0.7763 0.4679 0.7144 0.8301 0.8787 0.7335  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 0.7602 0.8145 0.8535 0.9113 0.8927 0.8464  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠−𝑚𝑚𝑒𝑒𝑒𝑒  0.0028 17.8922 0.0006 0.0002 0.0014 3.5794  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠+𝑚𝑚𝑒𝑒𝑒𝑒  0.0006 17.8968 0.0003 0.0002 0.0029 3.5802  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠−𝑚𝑚𝑒𝑒𝑒𝑒  0.6931 0.4775 0.7174 0.8311 0.8807 0.7200  
𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠+𝑚𝑚𝑒𝑒𝑒𝑒  0.7415 0.4768 0.7190 0.8306 0.8798 0.7296  

 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚 0.7244 0.7841 0.8375 0.9012 0.8875 0.8269  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠−𝑚𝑚𝑒𝑒𝑒𝑒  0.7310 0.4685 0.7125 0.8309 0.8789 0.7244  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠+𝑚𝑚𝑒𝑒𝑒𝑒  0.7763 0.4679 0.7145 0.8300 0.8782 0.7334  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚 0.7602 0.8145 0.8535 0.9113 0.8927 0.8464  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚−𝑚𝑚𝑒𝑒𝑒𝑒  0.0001 17.8896 0.0004 0.0002 0.0021 3.5785  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚+𝑚𝑚𝑒𝑒𝑒𝑒  0.0006 17.8968 0.0003 0.0002 0.0028 3.5801  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚−𝑚𝑚𝑒𝑒𝑒𝑒 0.7323 0.4782 0.7196 0.8300 0.8794 0.7279  
ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚+𝑚𝑚𝑒𝑒𝑒𝑒 0.7415 0.4768 0.7182 0.8303 0.8798 0.7293  

 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚 0.7244 0.7841 0.8375 0.9012 0.8875 0.8269  
 𝑄𝑄ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚−𝑚𝑚𝑒𝑒𝑒𝑒 0.7678 0.4693 0.7156 0.8290 0.8779 0.7319  
 𝑄𝑄ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚+𝑚𝑚𝑒𝑒𝑒𝑒 0.7763 0.4679 0.7138 0.8296 0.8781 0.7331  
 𝑄𝑄ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚 0.7602 0.8145 0.8535 0.9113 0.8927 0.8464  
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4.2 Graffiti 

In 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is reduced by 40.8403% overall based on Table 3. ECC decreases 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 for all images except img4 
where it increases by 6.4364%. ECC increases 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚  by 1.7270% for 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 . In img2,  
𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟+𝑚𝑚𝑒𝑒𝑒𝑒  exceeds 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚  by 0.0259 points. Across all images, 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚  presents a possible 
improvement of 25.1710% from the original algorithm. The universal image quality index, 𝑄𝑄, of 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 across all 
images increases by 1.6801% with ECC. 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟+𝑚𝑚𝑒𝑒𝑒𝑒  outperforms 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 by 0.0229 points in img2. 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 is a 
28.1748% improvement on 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟−𝑚𝑚𝑒𝑒𝑒𝑒 overall. 

With ECC, 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠’s 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 decreases by 5.1924% overall. Only img5 experiences adverse effects while the remaining 
images reap benefits from ECC. The 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 of 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 improves by 2.5125%. All images experience improvements in 
𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚. Similarly, improvements in 𝑄𝑄 occur in all images with an overall positive effect of 2.3666% for 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠. The 
𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 of 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 after ECC surpasses that of the ground truth by around three points. The gap in 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 
performance between the ground truth and original algorithm is about 28%. 

ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚’s 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is increased by 0.0170 pixel overall after ECC. Positive effects occur in img3 and img5 while the 
opposite occurs in img2, img4, and img6. With ECC, the 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚  of ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚  increases by 1.5368%. All images 
experience this positive effect in 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 . In the same way, ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 ’s 𝑄𝑄  for all images increases with an overall 
increase of 1.5212%. ECC’s benefits allow ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚’s 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 to leapfrog the ground truth performance by about 
up to 3.4456 points. The ground truth performance in 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 presents a potential improvement of around 27% 
over the original algorithm. 

Table 3. The 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚, and 𝑄𝑄 of original (−𝑚𝑚𝑐𝑐𝑐𝑐), refined (+𝑚𝑚𝑐𝑐𝑐𝑐), and ground truth homography (𝑇𝑇𝑚𝑚𝑠𝑠) using the 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠, and ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 feature-based image registration methods in the Graffiti dataset. 

 Target image 
img2 img3 img4 img5 img6 Average 

 

Feature 
  
        

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟−𝑚𝑚𝑒𝑒𝑒𝑒  0.5441 0.1000 0.0613 0.3388 0.1416 0.2372  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟+𝑚𝑚𝑒𝑒𝑒𝑒  0.1176 0.0877 0.0652 0.3388 0.0923 0.1403  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟−𝑚𝑚𝑒𝑒𝑒𝑒  0.7465 0.4795 0.5348 0.6649 0.7214 0.6294  
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟+𝑚𝑚𝑒𝑒𝑒𝑒  0.7857 0.4841 0.5394 0.6683 0.7239 0.6403  

 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚  0.7598 0.7575 0.7875 0.8293 0.8052 0.7878  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟−𝑚𝑚𝑒𝑒𝑒𝑒  0.7778 0.4733 0.5297 0.6615 0.7190 0.6323  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟+𝑚𝑚𝑒𝑒𝑒𝑒  0.8157 0.4783 0.5344 0.6644 0.7218 0.6429  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 0.7927 0.7813 0.8106 0.8450 0.8224 0.8104  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠−𝑚𝑚𝑒𝑒𝑒𝑒  0.0668 0.1275 0.0679 0.3388 0.1433 0.1489  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠+𝑚𝑚𝑒𝑒𝑒𝑒  0.1193 0.0877 0.0652 0.3388 0.0946 0.1411  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠−𝑚𝑚𝑒𝑒𝑒𝑒  0.7137 0.4808 0.5374 0.6673 0.7237 0.6246  
𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠+𝑚𝑚𝑒𝑒𝑒𝑒  0.7857 0.4841 0.5394 0.6683 0.7239 0.6403  

 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚 0.7598 0.7575 0.7875 0.8293 0.8052 0.7878  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠−𝑚𝑚𝑒𝑒𝑒𝑒  0.7479 0.4748 0.5324 0.6635 0.7215 0.6280  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠+𝑚𝑚𝑒𝑒𝑒𝑒  0.8157 0.4783 0.5344 0.6644 0.7218 0.6429  
 𝑄𝑄𝑚𝑚𝑚𝑚𝑟𝑟𝑠𝑠𝑚𝑚𝑟𝑟𝑚𝑚 0.7927 0.7813 0.8106 0.8450 0.8224 0.8104  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚−𝑚𝑚𝑒𝑒𝑒𝑒  0.0624 0.1210 0.0582 0.3389 0.0431 0.1247  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚+𝑚𝑚𝑒𝑒𝑒𝑒  0.1193 0.0877 0.0652 0.3388 0.0977 0.1417  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  
 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚−𝑚𝑚𝑒𝑒𝑒𝑒 0.7524 0.4795 0.5362 0.6638 0.7211 0.6306  
ℎ𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚+𝑚𝑚𝑒𝑒𝑒𝑒 0.7857 0.4841 0.5394 0.6683 0.7239 0.6403  

 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚 0.7598 0.7575 0.7875 0.8293 0.8052 0.7878  
 𝑄𝑄ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚−𝑚𝑚𝑒𝑒𝑒𝑒 0.7826 0.4734 0.5311 0.6604 0.7189 0.6333  
 𝑄𝑄ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚+𝑚𝑚𝑒𝑒𝑒𝑒 0.8157 0.4783 0.5344 0.6643 0.7218 0.6429  
 𝑄𝑄ℎ𝑚𝑚𝑟𝑟𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟𝑚𝑚 0.7927 0.7813 0.8106 0.8450 0.8224 0.8104  
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5.0 DISCUSSION 

Results show that ECC largely improves registration of images in stitching based on 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄. Only 5 out 
of 30 images (5 target images × 3 feature-based methods × 2 datasets) showed minor decreases in ssim of between 
0.0005 and 0.0014 across both datasets whereas the others showed improvements of between 0.0002 and 0.0720. 

In terms of Q, 6 out of 30 images showed decreases of between 0.0001 and 0.0018 while the rest had improvements 
of between 0.0002 and 0.0677. In the same way, 43% of 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 results across both datasets show minor negative 
results (i.e. an increase in 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 of between 0.0002 and 0.0569 pixel) while the rest show possible improvements of 
up to 0.4265 pixel. 

The sparse decreases in 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 performance occur mostly in the Boat dataset as the large scale change 
between target images prove to be challenging. Only 21% of negative results occur in the Graffiti dataset, all of 
which are under the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 metric.  

The large scale variation in the Boat dataset causes adverse results for both the 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 metrics in this dataset 
because both of them assume that there are strong interdependencies between spatially close pixels. Both evaluation 
metrics perform adversely on the same images (except img3 by 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) in this dataset because 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 are very 
similar in the way that 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 is an improved version of 𝑄𝑄. Besides that, mostly negative results in img3 of the Boat 
dataset on all evaluation metrics are complications arising from poor initialisations by the feature-based methods.  

The largest improvement occurs at the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in the Graffiti dataset with a decrease of around 40% overall. The only 
exception occurs at the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in the Boat dataset which may be because the ECC implementation is not optimised. 
ECC is fixed to 15 iterations as opposed to a convergent approach which is more optimal. 

ECC’s refinement allows the algorithms to outperform the ground truth 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 in img2 of both datasets. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
does not follow this trend because it uses the ground truth homography as the benchmark for its computation. The 
large performance gap (15% - 29%) between the ground truth and original algorithm suggests that there is room for 
improvement in the feature-based registration step of stitching. 

 

 

Fig. 4. Panorama produced using the proposed stitching algorithm on the Boat and Graffiti dataset. 

 

The evaluation metrics use grayscale images for computation. A metric which uses the RGB values of an image in 
its computation can better simulate the perception of a human visual system by weighting each colour channel 
accordingly. Other than that, the visual appeal of the stitching product can be enhanced with post-processing 
routines that perform exposure compensation, seam line adjustment, and blending. 
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The outcome of experiments agree with previous literature on the suitability of feature-based registration for images 
which undergo rotation, scale, and viewpoint changes. Close values between the original and refined algorithm show 
that the area-based registration performance relies on a good initialisation by feature-based registration. ECC’s 
largely positive effect on registration supports the previous assertion that area-based registration has higher accuracy 
than feature-based-registration. 

6.0 CONCLUSION 

An image stitching algorithm with registration of image pairs refined by ECC is carried out. Results show that ECC 
is mostly effective in increasing registration accuracy in stitching. The only exception is a slight increase in average 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in the Boat dataset. The large gap between the ground truth and the original algorithm suggests that much 
improvement can be done in this area. Even so, the refined algorithm manages to outperform the ground truth at 
𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑄𝑄 in img2. The algorithm encourages an alternative approach to stitching as opposed to the more common 
way of using rotation and camera matrices. This approach offers a potentially more efficient solution if correction of 
lens distortion is not required. 

ECC’s implementation can be improved by using a convergent approach to increase its effectiveness. Post-
processing routines can be applied to the panorama to make it more visually appealing. Consequently, metrics can 
be applied on the blended panorama to assess the image quality closer to its final product. Other than that, they can 
be modified to weight each colour channel of an RGB image to better replicate the human visual system. The 
robustness of this approach can be evaluated more thoroughly by using different datasets. Its applications include 
reduction of artefacts in stitching and increase in accuracy of motion estimation between images. 
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