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ABSTRACT 
 
Artificial neural networks (ANNs) have been developed and applied to a variety of problems, such as pattern 
recognition, clustering, function approximation, forecasting, optimization, etc. However, existing ANNs have a high 
computational cost, since their learning methods are mostly based on a parameter tuning approach. Extreme 
learning machine (ELM) is a state-of-the-art method that generally dramatically reduces the computational cost. An 
analysis of the ELM method reveals that there are unsolved key factors, including inefficient hidden node 
construction, redundant hidden nodes, and unstable results. Therefore, we describe a new learning machine based 
on analytical incremental learning (AIL) in conjunction with principal component analysis (PCA). This learning 
machine, PCA-AIL, inherited the advantages from the original one and solved the unsolved key factors of ELM, and 
also extended AIL capability to serve a multiple-output structure. PCA-AIL was implemented with a single-layer 
feed-forward neural network architecture, used an adaptive weight determination technique to achieve a compact 
optimal structure and also used objective relations to support multiple output regression tasks. PCA-AIL has two 
steps: objective relation estimation and multiple optimal hidden node constructions. In the first step, PCA estimated 
the objective relations from multiple-output residual errors. In the second step, the multiple optimal nodes were 
obtained from objective relations and added to the model. PCA-AIL was tested with 16 multiple-objective regression 
datasets. PCA-AIL mostly outperformed other methods (ELM, EM-ELM, CP-ELM, DP-ELM, PCA-ELM, EI-ELM) 
in terms of fast testing speed – 0.0017 second, a compact model – 19.9 nodes, an accurate performance – RMSE 
0.11261, and a stable result – S.D. of RMSE 0.00911: reported in averaged. 
 
Keywords:  Extreme learning machine (ELM), Analytical incremental learning (AIL), Principal component 
analysis (PCA), Objective relation learning (ORL), Optimal hidden node determination, Multiple-output 
architecture, Multiple-output regression 
 
1.0 INTRODUCTION 
 
Artificial neural networks (ANNs) are widely used algorithms for solving a variety of problems in pattern 
recognition, clustering, function approximation, forecasting, optimization, etc. [1]. Furthermore, their activation 
functions can efficiently map from an input space to a feature space. This capability can be applied to either simple 
or complex data patterns. The simple data patterns can be estimated with an essentially linear trend, but complex 
data patterns require more nonlinear functions to estimate. Therefore, datasets can be characterized as either simple 
or complex data patterns independently from its number of features. 
 
However, conventional ANNs have a high computational cost, since their learning methods are mostly based on a 
parameter tuning, such as back-propagation (BP). In 2004, Huang et al. presented a breakthrough in learning 
methods - the "extreme learning machine" (ELM) [2], which is implemented in a single layer feed-forward neural 
network (SLFN) and does not tune parameters as it learns, thus dramatically reducing the computational cost. An 
ELM generates a fixed number of hidden nodes with random input layer weights and hidden layer biases and then 
computes all hidden layer weights at once by using an ordinary least square method. As a result, it is typically a 
thousand times faster than BP, but also computes more accurate prediction results. Nevertheless, ELM still suffers 
from a manual determination of optimal structure construction, redundant hidden nodes [3], and unstable results, 
since it requires a large number of randomly created hidden nodes to achieve a good generalization performance. 
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Since then, many improved ELM approaches have been designed. To the best of our knowledge, their major 
improvements can roughly be divided into three strategies for obtaining ELM parameters: (i) input layer weight 
randomization, (ii) input layer weight determination and (iii) adaptive weight determination. The first strategy 
attempts to determine the optimal structure of a hidden layer to provide the best performance with low resource 
consumption. Feng et al. introduced an Error Minimized ELM (EM-ELM) [4] as a learning method. Feng's learning 
method added hidden nodes to the model singly or in groups, where the group size can be varied. The hidden nodes 
were added continuously until stopping criteria, including the number of nodes or expected prediction performance, 
are satisfied. Thus, EM-ELM can obtain an optimal structure for an accurate prediction. Later, Wang et al. 
demonstrated that EM-ELM did not guarantee that the newly added hidden nodes will increase the performance, 
since their learning method did not have a generalization measure [5]. Furthermore, the EM-ELM structure was 
similar to the original one. This meant that EM-ELM still inherited problems from the original ELM, when high 
accuracy was required. Therefore, Wang et al. [5] described constructive and destructive parsimonious (CP and DP) 
ELMs, which incrementally determined the appropriate nodes in a given set of hidden nodes. CP-ELM selected 
hidden nodes, which led to significant error reduction, while DP-ELM removed hidden nodes, which did not 
significantly reduce errors. Both learning methods used QR decomposition of a recursive orthogonal least square 
algorithm for greatly reducing the size of operation matrices. Consequently, their memory consumption is very low, 
but their time complexity is very high. Although many enhanced ELMs that were improved by input layer weight 
randomization can lead to accurate predictions, their results were still unstable, because the hidden nodes were 
randomly generated. Furthermore, this concept requires many more hidden nodes. In the second strategy, ELMs 
were improved with an input layer weight determination technique. These ELMs did not randomize input layer 
weights; therefore, they provided stable results. A good example of an input layer weight determination learning 
method is Principal Component Analysis ELM (PCA-ELM) - Castaño et al. [6]. The PCA-ELM used 90% of the 
sum of PCA coefficients as the input layer weights. PCA coefficients were calculated from input samples. This 
method determined an optimal structure with stable results and obtained a specific number of hidden nodes, 
determined by the number of PCA coefficients. Even though PCA-ELM can ignore randomization and determine 
the appropriate number of hidden nodes automatically, the performance tends to be low on complex data patterns, 
for small input dimensions, since the number of hidden nodes is less than or equal to the number of input 
dimensions. Therefore, Castaño et al. [7] improved PCA-ELM, in conjunction with a Linear Discriminant Analysis 
method - LDA-PCA-ELM, which performed better than PCA-ELM on complex data patterns for classification 
tasks, but not for regression problems. LDA-PCA-ELM determined the optimal structure by using a combination of 
hidden nodes created from PCA and LDA coefficients. In the last strategy, adaptive weight determination was used 
as a key factor for calculating the optimal parameters. All optimal parameters were retrieved from the learning 
situation. A good example of this concept can be found in the incremental ELM (I-ELM) of Huang et al [8]. I-ELM 
determined the optimal structure, by singly adding a randomly hidden node, and then computing the hidden layer 
weights. The hidden layer weights, for the added hidden nodes, were optimized based on residual error until the 
target norm of residual error was reached. However, this approach still had limitations in redundant hidden nodes 
and un-retrained hidden layer weights as reported by Huang and Chan [9], [10]. These limitations tended to increase 
unnecessary complexity and slow convergence: they further improved I-ELMs [9]–[11] to improve performance. 
However, the hidden layer weights for both I-ELM and the improved I-ELMs were calculated with a non-least-
square method; therefore, they do not reach optimal solutions [12]. 
 
To overcome these limitations, Alfarozi et al. designed an Analytical Incremental Learning (AIL), with adaptive 
weight determination to overcome the problems of either conventional or improved ELM approaches, by gradually 
increasing the number of hidden nodes and calculating parameters deterministically [13]. AIL avoided redundant 
hidden nodes, fully automatically determined an optimal structure, guaranteed stable performance in each iteration, 
and achieved good generalization performance with a small number of hidden nodes. Moreover, only one 
regularized hyperparameter needed to be tuned. The advantages of AIL mainly came from the construction of 
hidden nodes, such that the input layer weights and hidden layer biases were calculated by means of ridge regression 
[14] on the residual error of the previous iteration. However, AIL still needs an important improvement for multiple-
output regression tasks. AIL weaknesses mainly came from the lack of objective relation determination, that can 
represent the model information, such as relationships among the outputs and residual error to create the optimal 
hidden nodes. 
 
To find an optimal hidden node solution and to solve a multiple-output architecture problem of AIL, we propose a 
Principal Component Analysis AIL (PCA-AIL) with an objective relation estimation, based on PCA. The objective 
relation is the key to the increased prediction performance of AIL for the multiple-output regression. In contrast to 
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PCA-ELM [6], which applied PCA to the input data, our algorithm uses PCA to estimate objective relations from 
the residual error matrix, representing relative objectives and then uses them to obtain the optimal hidden nodes in 
each iteration. Furthermore, PCA provides significant objective relations to obtain multiple hidden nodes, based on 
added hidden nodes. This also leads to an increment of the AIL convergence rate. As a result, PCA-AIL has better 
prediction compared to most of the baseline methods in even low or high input dimensions. Furthermore, our 
method has also a compact structure. 
 
This paper is organized as follows. Section 2 provides backgrounds of ELM and AIL and analyzes their limitations. 
Our algorithm is described in Section 3. Section 4 discusses the experimental results. Finally, we conclude in 
Section 5. 

Table 1: Summary of reviewed learning methods 
   

Strategy Method 
Objective 
relation 
learning  

Automatic 
structure 

determination 

Multiple 
output 

architecture 

Redundant 
node  

avoidance 

Compact 
structure 

Stable  
result 

Input weight 
randomization 

ELM       
EM-ELM       
CP-ELM       
DP-ELM       

Input weight 
determination 

PCA-ELM       
LDA-PCA-ELM*       

Adaptive weight 
determination 

I-ELM       
CI-ELM       
EI-ELM       
AIL       

Note: * LDA-PCA-ELM supports only classification tasks.  
 

2.0 BACKGROUND AND PROBLEM FORMULATION 
 
2.1 Extreme Learning Machine and Its Extensions 
 
Extreme learning machine [2], [15] is a well-known and efficient learning method for a single layer feed-forward 
neural network (SLFN) architecture. It outperforms traditional learning methods, such as gradient descent [16], with 
extremely fast learning speed and good generalization. ELM efficiency comes from the construction of hidden nodes 
that are randomly generated from input layer weights and hidden layer bias parameters. A model constructed from 
the random generation based on a universal approximation theorem [17] can have as many hidden nodes as possible. 
This succeeds in reducing residual error to zero on any continuous function. Moreover, this method analytically 
calculates hidden layer weights from many hidden nodes at once, with an ordinary least square method, instead of 
tuning each parameter; therefore, the local minimum problem [18] is eliminated. Mathematically, the ELM for the 
SLFN architecture with L additive nodes can be written: 
 

 
1

g( )
L

j j j
j

bb
=

= ⋅ +∑T X w , (1) 

 
where  𝐓𝐓 ∈ ℝ𝑁𝑁×𝑀𝑀  is the desired output matrix with N samples and M objectives, g(∙): ℝ→ℝ  is an activation 
function, 𝐗𝐗 ∈ ℝ𝑁𝑁×𝑛𝑛  is the input sample matrix with n features, 𝐰𝐰𝑗𝑗 ∈ ℝ𝑛𝑛×1  is the input layer weight vector that 
connects each input node to the j-th hidden node, 𝑏𝑏𝑗𝑗 ∈ ℝ is the j-th hidden node bias and 𝛽𝛽𝑗𝑗 ∈ ℝ1×𝑀𝑀 is the hidden 
layer weight vector that connects the j-th hidden node to every output node. From Eq.(1), we can say that the desired 
output matrix is generated from a linear combination of the product of the hidden layer weight vector and the 
activation function; that is, the learning efficiency mainly depends on the hidden layer weight vector. This will be 
discussed in Subsection 2.2. 
 
Although ELM is more efficient than traditional learning methods, its limitations are unavoidable and are as follows. 
A suitable number of hidden nodes for an optimal structure are manually set; redundant hidden nodes still remain 
[3]; and testing speed is always slow due to a large number of generated and redundant hidden nodes. In 2006, 
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Huang et al. [8] introduced an incremental ELM (I-ELM) to overcome the ELM limitations. They focused on the 
construction of the optimal structure based on an incremental technique, which adds a single hidden node to the 
model. This method differs from the traditional ones, in that it does not require any control criteria, such as learning 
rate and learning epoch counts, to obtain the proper weights. Moreover, I-ELM shows that its hidden layer weights 
of added hidden nodes are optimal. This optimization attempts to maximize the difference between the previous and 
the current iteration. However, the hidden nodes of I-ELM are frozen, after they have been added into the model. In 
other words, the hidden layer weights of I-ELM are not updated, thus causing an inefficient structure. Huang et al. 
[9] attempted to improve the performance of I-ELM by introducing a convex incremental ELM (CI-ELM) based on 
Barron's convex optimization. The CI-ELM method updates the existing hidden layer weights each time a hidden 
node is added. In this concept, CI-ELM demonstrates that the hidden layer weight update can improve the 
convergence rate and provide a more compact structure. Even though both I-ELM and CI-ELM can construct 
optimal structures that provide efficient prediction performance and improve the convergence rate, they still suffer 
from redundant nodes in the hidden layer [12], as in the original ELM. These redundant nodes occur from a very  
 

 
Fig. 1: Prediction for PCA-ELM and AIL using the Thurber dataset [23] 

 
small residual error difference between the previous and current iterations: the newly added hidden node leads to a 
very small improvement in prediction, increases complexity unnecessarily and reduces the convergence rate. Later, 
an enhanced incremental ELM (EI-ELM), also introduced by Huang et al. [10], showed that the optimal node among 
the group of nodes can be found to construct a more compact structure and to improve performance. The optimal 
node is selected from hidden nodes that provide the smallest residual error of the group of randomly created nodes at 
each iteration, where the size of the group can be varied. If there is only one hidden node in the given group, then 
EI-ELM is similar to I-ELM. However, the hidden layer weights of I-ELM are obtained by a non-least-square 
method. Hence, the estimated output does not reach the minimum error.  
 
Feng et al. introduced an error minimized ELM (EM-ELM) [4] to improve ELM performance by adding one or 
more hidden nodes to the model continuously. The optimal structure determined by adding a group of hidden nodes 
can converge faster than traditional incremental learning methods, such as I-ELM. Furthermore, EM-ELM 
determines proper hidden layer weights and updates existing hidden layer weights with an ordinary least square 
method, by inverting a block matrix [19]. The block matrix inversion greatly reduces the complexity of the least 
square method. Nevertheless, EM-ELM still suffers from an over-fitting: it does not guarantee that added hidden 
nodes will increase the generalization performance [5]. Thus, it forces one to manually set a criterion, the expected 
learning accuracy, to provide the suitable number of hidden nodes for an optimal structure and avoid over-fitting in 
a training set. 
 
Castaño et al. introduced principal component analysis ELM (PCA-ELM) to overcome the unstable result [6]. The 
PCA-ELM method obtains the optimal structure with 90% of the sum of PCA coefficients as sample hidden node 
parameters. This method can efficiently determine the specific number of hidden nodes and is also fast. For the 
hidden layer, the hidden layer weights are determined in the same way as an improved ELM [20], using ridge 
regression. Even though its accuracy tends to be low on complex data patterns, when the input dimension is small, 
the number of hidden nodes is less than or equal to the number of input dimensions. For example, when the PCA-
ELM is applied to a sigmoid-like data pattern with only one independent variable, the accuracy of PCA-ELM 
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depends on a least square solution of a training set with a zero-mean as can be seen in Fig. 1. Furthermore, the 
model generated contains only one hidden node. This phenomenon will be analyzed in Subsection 2.3. 
 
Wang et al. introduced constructive and destructive parsimonious ELMs (CP- and DP-ELMs) to eliminate the 
redundant nodes of the original ELM by using incremental and decremental techniques. These methods gradually 
search for hidden node regressors that cause the most significant error reduction from a group of randomly created 
hidden nodes, until the error reduction criterion is satisfied. They can obtain a compact structure, achieve better 
accuracy and can be applied on an online-learning task, when the training set is fed chunk by chunk. Furthermore, 
the hidden layer weights are not calculated in the searching procedure but derived from backward substitution. 
Nevertheless, searching for a group of optimal hidden node regressors is slow. As reported in [21], the QR 
decomposition with a Givens rotation is commonly used in a recursive orthogonal least square method, which is the 
main cause of excessive time. Moreover, the unstable result still remains due to the use of randomly created hidden 
nodes. Abilities of the learning methods are summarized in Table 1.  
 

 
Fig. 2: Learning time for EM-ELM and AIL based on the Abalone dataset [26] 

 
2.2 Analytical Incremental Learning 
 
In 2016, analytical incremental learning (AIL) [13] was described by Alfarozi et al. to obtain an optimal structure 
under SLFN architecture, by adding an optimal hidden node to the model. Hidden node parameters, input layer 
weights and hidden layer biases, were approximated from the residual error of a previous learning iteration by using 
ridge regression, an ordinary least square method with regularization. As a result, the errors of all added hidden 
nodes were reduced to minima and the over-fitting problem was avoided by regularization. Furthermore, AIL 
always provided stable results. Another advantage of AIL was its hidden layer parameter determination. AIL was 
developed on the same basis as ELM. Therefore, the optimal structure was generated based on the hidden layer 
parameter optimization. Thus, AIL incrementally updated the hidden layer parameters by using an ordinary least 
square method. Thus a key factor in AIL was the use of recursive block matrix inversion [19], instead of a Moore-
Penrose generalized inverse, commonly used in improved ELMs [4], [6], [7], [15], [20]. This sped up the hidden 
layer parameter determination. In addition, unlike the EM-ELM, the recursive block matrix inversion of AIL was 
reusable. Hence, the hidden layer parameter determination of AIL had a lower computational cost than the EM-ELM 
on a large dataset (See Fig. 2). Moreover, AIL was accurate, even on small-input-dimension datasets (See Fig. 1). 
The SLFN structure for AIL can be written as 
 

 0
1

z( )
k

j j j
j

bb b
=

= ⋅ + +∑t X w , (2) 

 
where 𝐭𝐭 ∈ ℝ𝑁𝑁×1 is the desired output vector, z(∙): ℝ→ℝ is the invertible bipolar activation function, 𝐗𝐗 ∈ ℝ𝑁𝑁×𝑛𝑛  is the 
input matrix with N samples and n features, 𝐰𝐰𝑗𝑗 ∈ ℝ𝑛𝑛×1 is the input layer weight vector that connects each input 
node, which corresponds to each input feature, to the j-th hidden node, 𝑏𝑏𝑗𝑗 ∈ ℝ is the j-th hidden node bias, 𝛽𝛽𝑗𝑗 ∈ ℝ is 
the hidden layer weight that connects the j-th hidden node to the output node, 𝛽𝛽0 ∈ ℝ is the output layer bias, and k 
is the number of hidden nodes. The significant term of AIL, different from that of ELM, expressed in Eq. (1), was 
the hidden layer parameters. The hidden layer parameters of AIL consist of hidden layer weights 𝛽𝛽𝑗𝑗  and output layer 
bias 𝛽𝛽0, while those of ELM only consist of hidden layer weights, 𝛽𝛽𝑗𝑗. From Eq. (2), the prediction no longer depends 
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on the hidden layer weight vector, but includes an output layer bias. Therefore, the output layer bias, 𝛽𝛽0, provides a 
more flexible prediction for the compact model of AIL. As shown in Fig. 3, the prediction of ELM that is modified 
with an output layer bias outperforms the original ELM, when its structure contains only two hidden nodes. Hence, 
the output layer bias is important for a learning method that provides a small structure. An experimental justification 
is shown in Subsection 4.3. 
 
In order to reduce the computational complexity of the structure of AIL, let 𝐇𝐇(𝑘𝑘) be the hidden layer output matrix 
of the k-th iteration, let 𝛽𝛽(𝑘𝑘) be the compact form of the hidden layer parameters of the k-th iteration, and let Lk be 
the number of hidden nodes of the k-th iteration. At first, the first column of the hidden layer output matrix, 𝐇𝐇(𝑘𝑘), is 
set to a vector of ones. Equation (2) can then be simplified as 
 

 
Fig. 3: Prediction of ELM without (blue) and with (red) and output layer bias on the Thurber dataset [23] 
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Theoretically, SLFN achieves the desired output with zero error, by providing a very large number of hidden nodes 
and hidden layer parameters, 𝛽𝛽(𝑘𝑘), to solve Eq. (3). However, in practice, it is difficult to achieve the zero-error 
output. One way to achieve a very small error is by providing a finite number of hidden nodes and optimal hidden 
layer parameters. The optimal hidden layer parameters are those that provide minimal error between desired and 
predicted outputs. For AIL, the number of hidden nodes equals the number of learning iterations. Therefore, to 
determine the optimal hidden layer parameters of AIL with k hidden nodes at the k-th iteration, 𝛽𝛽∗(𝑘𝑘), it can be 
incrementally estimated by the least square optimization: 
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where 𝐒𝐒(𝑘𝑘)−1 = �𝐇𝐇(𝑘𝑘)T𝐇𝐇(𝑘𝑘)�

−1
 and 𝐮𝐮(𝑘𝑘) = 𝐇𝐇(𝑘𝑘)T𝐭𝐭. The optimal hidden layer parameters of the current hidden node, 

𝛽𝛽∗(𝑘𝑘), and existing hidden nodes are optimized by a least square method, based on the block recursive generalized 
inversion, instead of Moore-Penrose inversion. In this way, AIL learns faster on a large hidden layer output 
matrix, 𝐇𝐇(𝑘𝑘), because the block recursive inversion complexity is 𝑂𝑂(𝐿𝐿𝑘𝑘𝜀𝜀 ) [22], where 2 < 𝜀𝜀 ≪ 3, whereas 𝜀𝜀 = 3 for 
Moore-Penrose Let 𝐡𝐡𝑘𝑘 ∈ ℝ𝑁𝑁×1  be an output vector of a newly created hidden node at the k-th iteration. Then 
optimal hidden layer parameters are determined by 
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where 𝐯𝐯 = 𝐇𝐇(𝑘𝑘−1)T𝐡𝐡𝑘𝑘, 𝛉𝛉 = 𝐒𝐒(𝑘𝑘)−1𝐯𝐯, 𝑑𝑑 = 𝐡𝐡𝑘𝑘T𝐡𝐡𝑘𝑘, and 𝛼𝛼 = 𝑑𝑑 − 𝐯𝐯T𝛉𝛉. Here, 𝛼𝛼 is a Schur complement [23] that is used 
to detect the redundancy of the newly created hidden node to existing hidden nodes. Furthermore, AIL’s 
construction of hidden nodes guarantees that every added node provides the optimal parameter and always decreases 
the norm of residual error, the difference between the desired output and the predicted output, as much as possible. 
In AIL, if a newly created hidden node is equal or orthogonal to the previous residual error, 𝐞𝐞𝑟𝑟

(𝑘𝑘−1) ∈ ℝ𝑁𝑁×1, then 
zero error is obtained. The construction of the current node can be expressed: 
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where 𝑐𝑐 ∈ ℝ is the scaling parameter of the residual error from the previous iteration, 𝐞𝐞𝑟𝑟

(𝑘𝑘−1). This scaling parameter 
can be determined by a scaling function, 𝑞𝑞(∙):ℝ𝑁𝑁×1 → ℝ: 
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Then, replacing 𝐡𝐡𝑘𝑘 of Eq. (6) with 𝑍𝑍�𝐗𝐗�𝐰𝐰�𝑘𝑘�, we have 
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where Z(⋅)  is the element-wise function of z(⋅) , 𝐗𝐗� = [𝟏𝟏𝑁𝑁×1 𝐗𝐗𝑁𝑁×𝑛𝑛]  is the training sample matrix and  
𝐰𝐰�𝑘𝑘 = �𝑏𝑏𝑘𝑘 𝐰𝐰𝑘𝑘

T�T ∈ ℝ𝑛𝑛+1×1 is the compact form of the hidden layer bias and input layer weights of the k-th node. 
From this, the parameter vector of the k-th hidden node can be computed by taking the inverse of Z(⋅) to Eq. (8), 
leading to: 
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Then, approximate Eq. (9), by least squares, to obtain the optimal weight vector: 
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Moreover, AIL applies least square optimization with regularization; thus, it is able to avoid ill-conditioned 
solutions and achieve better generalization.  
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where 𝜆𝜆 ∈ ℝ is the regularization hyper-parameter. Hence, the current hidden node is constructed: 
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The residual error of the k-th iteration is: 
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The steps of the AIL procedure can be summarized:  
 

1. Set 𝑘𝑘 ← 0 and initialize a starting residual error, 𝐞𝐞𝑟𝑟
(0), from a hidden layer bias, 𝐇𝐇(0) = 𝐡𝐡0 = 𝟏𝟏𝑁𝑁×1, by using 

the hidden layer parameters calculated by Eq. (4). 
2. 𝑘𝑘 ← 𝑘𝑘 + 1. 
3. Calculate the input layer weights and hidden layer bias of the k-th iteration, 𝐰𝐰�𝑘𝑘∗ using Eq. (11) with respect to 

the residual error of the previous iteration, 𝐞𝐞𝑟𝑟
(𝑘𝑘−1). 

4. Create the hidden node, 𝐡𝐡𝑘𝑘. 
5. If the current node is linearly dependent on an existing node, then stop adding nodes and terminate. 
6. Determine the hidden layer parameters of the current iteration, 𝛽𝛽∗(𝑘𝑘), and update all existing hidden nodes by 

using Eq. (5). 
7. Estimate an output and calculate the residual error of the current iteration, 𝐞𝐞𝑟𝑟

(𝑘𝑘). 
8. If the relative residual error of the current iteration is less than the expected value or the number of hidden 

nodes reaches the maximum value, stop adding nodes and terminate. 
9. Repeat Step 2. 

 
2.3 Analysis of Extreme Learning Machine and Analytical Incremental Learning  
 
The following features of all reviewed learning machines, such as objective relation learning, automatic structure 
determination, multiple-output architecture, redundant node avoidance, compact structure, and stable result, are 
analyzed and their limitations highlighted. To achieve a compact optimal learning machine, objective relation 
learning is an important feature. As summarized in Table. 1, all reviewed learning methods, except LDA-PCA-
ELM, do not achieve the objective relation learning feature, since they generate a model based on the input-output 
mapping. For the second feature, all reviewed methods can provide automatic structure determination, except for the 
original ELM, which was designed for a manually predefined number of hidden nodes. For a multiple-output 
architecture, all reviewed methods can support this feature, except for the original AIL, which was designed only for 
the optimal structure generation, by using the residual error vector, but not for a multiple-output architecture. For the 
fourth and fifth features, ELM, EM-ELM, and I-ELM were analyzed to show that redundant node avoidance and a 
compact structure was not achieved. The main reasons follow.  
 
Define 𝛽𝛽(𝑘𝑘−1) ∈ ℝ𝐿𝐿𝑘𝑘−1×𝑀𝑀 , a matrix of hidden layer weights from the previous iteration, 𝐇𝐇(𝑘𝑘−1) ∈ ℝ𝑁𝑁×𝐿𝐿𝑘𝑘−1  as a 
hidden layer output matrix from the previous iteration, 𝛽𝛽(𝑘𝑘) ∈ ℝ𝐿𝐿𝑘𝑘×𝑀𝑀 be hidden layer weights of the k-th iteration,  
𝐇𝐇(𝑘𝑘) ∈ ℝ𝑁𝑁×𝐿𝐿𝑘𝑘  be a hidden layer output matrix at the k-th iteration, 𝛿𝛿𝐇𝐇(𝑘𝑘) ∈ ℝ𝑁𝑁×𝛿𝛿𝐿𝐿𝑘𝑘  be an output matrix of 𝛿𝛿𝐿𝐿𝑘𝑘  
newly added hidden nodes at the k-th iteration, and 𝐓𝐓 ∈ ℝ𝑁𝑁×𝑀𝑀  is the desired output matrix. To prove that the 
selected node is redundant, we start with an objective function of the ELM implemented with the incremental 
technique. The objective function is: 
 

 
2( ) ( )
2

lim 0k k
k

b
→∞

− =T H  (14) 

 
The hidden layer output matrix at iteration, 𝐇𝐇(𝑘𝑘), can be replaced with a decomposed matrix, �𝐇𝐇(𝑘𝑘−1)  𝛿𝛿𝐇𝐇(𝑘𝑘)�, we 
have 
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If 𝛿𝛿𝐇𝐇(𝑘𝑘) is randomly created with almost linear dependence on 𝐇𝐇(𝑘𝑘−1): 
 

 ( )T T
21
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2
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−
− − −− ≈H H H H H , (16) 

 
then 𝛿𝛿𝐇𝐇(𝑘𝑘) is in the column space of 𝐇𝐇(𝑘𝑘−1). At this point, we can conclude that the newly added hidden nodes do 
not contribute to reducing the norm of the residual error. Therefore, the norm of the residual error at the k-th 
iteration is almost equal to the norm of error at the previous iteration: 
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This proves that the redundant hidden node is useless for error reduction. Therefore, redundant node avoidance 
becomes an essential feature for the compact optimal model. For the last feature, the PCA-ELM, improved by the 
input layer weight determination, solution can provide stable results, since they do not use randomization. As shown 
in Table 1, the input layer weight determination strategy succeeded in all features considered here. When we look 
inside the input layer weight determination strategy, used for PCA-ELM, its accuracy was still low as illustrated in 
Subsection 4.4. This limitation always arose when PCA-ELM was applied to complex data patterns. Furthermore, as 
mentioned in Subsection 2.1, when PCA-ELM was applied on a dataset, with a single independent variable, it 
obtained only one hidden node and performed poorly. The disadvantage of PCA-ELM comes from two causes, 
which are fundamental PCA constraints: (i) the number of principal components (PC) is always less than or equal to 
the number of input dimensions: the number of hidden nodes is too small, and (ii) PCA does not provide the bias 
parameters. To determine hidden nodes, PCA-ELM uses eigenvectors that are decomposed from the covariance 
matrix, as input layer weights. PCA-ELM computation can be summarized formally as: 
 

 ( )
1

g
L

j j
j

υ b
=

= ⋅∑T X , (18) 

 
where 𝐗𝐗� ∈ ℝ𝑁𝑁×𝑛𝑛  is the input with zero mean and 𝜐𝜐𝑗𝑗 ∈ ℝ𝑛𝑛×1 is the eigenvector that is used as input layer weights to 
connect the j-th hidden node. For a single independent variable dataset, written as 𝐱𝐱� ∈ ℝ𝑁𝑁×1, the eigenvector does 
not have any impact on the input data, since it is always equal to 1 as shown below Eqs. (19) to (21): 
 
 2σ υ υ= Λ , (19) 
 
where 𝜎𝜎2 ∈ ℝ is the covariance of 𝐱𝐱�, 𝜐𝜐 ∈ ℝ is eigenvector, and Λ ∈ ℝ is eigenvalue. One way to solve Eq. (19) is to 
substitute 1 for 𝜐𝜐. 
 
 2σ = Λ  (20) 
 
Then, the hidden node 𝐡𝐡 of 𝐱𝐱� is created: 
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Therefore, the prediction from PCA-ELM on 𝐱𝐱� is similar to the linear least squares solution of the transformed zero-
mean input samples: 
 

 ( ) 2
2min

b
bΩ = −h T h , (22) 

 
where Ω(·) is the objective function of PCA-ELM. From this argument, we see that the eigenvector, extracted from 
a single independent variable, does not affect the hidden node construction. Therefore, the prediction performance of 
PCA-ELM tends to be low on complex data patterns, with only one independent variable. In Fig. 1, PCA-ELM was 
tested on the Thurber dataset [23]. This dataset is a complex data pattern, since its characteristic is nonlinear, even 
though it has only one independent variable. In this case, PCA-ELM did not achieve accurate prediction. 
 
From analysis of EM-ELM, we found that it suffers from slow training speed. This can be observed with the EM-
ELM method on large datasets, because the hidden layer weight determination is 𝑂𝑂(𝑁𝑁3), where N is the number of 
samples, for every iteration. This complexity can be derived as follows. Let 𝐇𝐇𝑘𝑘 ∈ ℝ𝑁𝑁×𝐿𝐿𝑘𝑘  be the existing  
hidden nodes created by EM-ELM, 𝛿𝛿𝐇𝐇𝑘𝑘 ∈ ℝ𝑁𝑁×𝛿𝛿𝐿𝐿𝑘𝑘  be the newly created hidden nodes by EM-ELM, and let † be 
Moore-Penrose matrix inverse operation. We start with the hidden layer parameter determination expressed by Eq. 
(23). The hidden layer parameters are determined by matrix multiplication, subtraction and inversion. Time-
complexity of those operations depend on the dimension of their operands, 𝐇𝐇𝑘𝑘  and 𝛿𝛿𝐇𝐇𝑘𝑘 . In this case, the most 
complex operation is inversion of an 𝑁𝑁 × 𝑁𝑁 matrix in the first row of the projection term. Here, the inversion 
complexity is 𝑂𝑂(𝑁𝑁3). Therefore, in large datasets, EM-ELM is slower than other ELMs and AIL. To avoid this, 
EM-ELM adds a large number of hidden nodes at each iteration. 
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where 𝛽𝛽𝑘𝑘+1 is the hidden layer weights of the (k + 1)-th iteration and 𝐇𝐇𝑘𝑘

† = �𝐇𝐇𝑘𝑘
T𝐇𝐇𝑘𝑘�

−1𝐇𝐇𝑘𝑘
T𝐇𝐇. 

 
As a compact optimal structure is our goal, an adaptive weight determination strategy, implemented with AIL, is the 
best choice. The main reasons are: AIL (i) can determine the optimal structure automatically, (ii) avoids redundant 

 
 (a) Single-output structure (b) Multiple-output structure 

Fig. 4: Single and multiple-output node architectures 
 
hidden nodes, (iii) provides a compact structure, (iv) achieves accuracy when applied to small size or small 
dimension datasets, (v) runs faster, (vi) optimizes hidden layer parameters with a least square method, (vii) provides 
stable results, and (viii) has bias parameters on both hidden and output layers. However, although the original AIL, 
which is a single-objective learning method, can solve multiple-objective tasks, it was not as effective and efficient 
as the multiple-output learning method [26]. In other words, it required a large number of models for a single-
objective learning method. Moreover, AIL cannot generate the optimal structure by using the relation between the 
objectives. This implies that, even though AIL has an advantage in creating hidden nodes, that fit the single-output 
learning environment, it is still challenging to create an optimal node, that is suitable to a multiple-output node 
learning environment. In other words, when AIL attempts to create a new hidden node, it used a residual error vector 
to represent the model performance and to approximate parameters by using an ordinary least square method. In the 
case of multiple output nodes as shown in Fig. 4, the residual error was changed from vector to matrix form. The 
number of columns corresponds to the number of output nodes, where the residual error matrix is  
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where 𝐓𝐓 ∈ ℝ𝑁𝑁×𝑀𝑀  is the predicted output matrix with respect to N samples and M objectives, and  
𝐄𝐄𝑟𝑟 = �𝐞𝐞𝑟𝑟1 , … , 𝐞𝐞𝑟𝑟𝑀𝑀� ∈ ℝ

𝑁𝑁×𝑀𝑀  is the residual error matrix with respect to M objectives. Furthermore, the ridge 
regression method in Eq. (11) does not provide an objectives relation, but it provides the input layer weight by 
shrinkage projection of each decoded residual error, Z−1(𝐂𝐂𝐄𝐄𝑟𝑟), onto training data column space, as seen in Fig. 5, 
𝐖𝐖� ∈ ℝ𝑛𝑛+1×𝑀𝑀 is the input layer parameter matrix with respect to the residual error matrix, 
 
 ( ) ( )

1T T 1ˆ ˆ ˆ ˆ Zk rλ
−

−= +W X X I X CE , (25) 

 
where 𝐂𝐂 = [𝑐𝑐1, … , 𝑐𝑐𝑀𝑀] ∈ ℝ𝑀𝑀 is the scaling parameter vector with respect to each column of residual error matrix 
(See Eq. (24)). Each scaling parameter 𝑐𝑐𝑚𝑚  is obtained by applying the corresponding residual error vector 𝐞𝐞𝑟𝑟𝑚𝑚  to Eq. 
(7). Z−1(𝐂𝐂𝐄𝐄𝑟𝑟) in Eq. (25) can be decomposed as 
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where 𝐰𝐰�𝑚𝑚 is the input layer weight that corresponds to the m-th residual error vector. From Eq. (26), we found that 
each column vector is independent from other column vectors. Thus, we conclude that the AIL learning procedure 
cannot preserve the relation among objectives.  

 
Fig. 5: Geometric illustration of the shrinkage projection 

 
3.0  PCA-AIL METHOD 
 
We aimed to achieve the optimal hidden node solution, compact structure, and multiple-output regression for AIL. 
Key concepts, implementation processes, and algorithms of PCA-AIL are covered in the following subsections: 
definition of optimal hidden node and model determination, objective relation estimation and multiple optimal 
hidden node construction.  
 
3.1 Definition of Optimal Hidden Node and Model Determination 
 
A node that is added to a hidden layer of a single layer feed-forward neural network — a model — is called an 
optimal hidden node if the model provides a minimal error. Formally, an optimal hidden node can be defined  
 
 Definition 1: Let 𝑢𝑢(·) be an optimal node construction function, 𝑓𝑓(·) be an objective relation learning (ORL) 

function, and 𝐄𝐄𝑟𝑟  be relative objectives of a dataset. The newly created hidden nodes, 𝛿𝛿𝐇𝐇, of a 
single layer feed-forward neural network are determined by 

 
 ( )( )ru fδ =H E  (27) 
 

𝛿𝛿𝐇𝐇 are called the optimal hidden nodes if they are added to a model, then the model provides 
the least square norm of residual error based on an objective function of the model with newly 
created hidden nodes, ψ(·): 
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where 𝐓𝐓 is the desired output matrix, 𝛽𝛽  is the set of hidden layer parameters, and 𝐇𝐇 is the 
existing hidden nodes. 
 

From Definition 1, the optimal hidden nodes always provide a compact optimal model that can be defined in 
Definitions 2 and 3. 
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 Definitions 2: Let 𝛽𝛽𝑖𝑖 be optimal hidden layer weights of the i-th hidden node, 𝐡𝐡𝑖𝑖  be the i-th optimal hidden 
node, which is derived from 𝛿𝛿𝐇𝐇 of Definition 1, 𝛽𝛽0 be optimal output layer biases, and L be the 
number of optimal hidden nodes. An optimal model ϕ of a single layer feed-forward neural 
network for multiple outputs is determined by 

 

 0
1

L

i i
i

φ b b
=

= +∑h . (29) 

 
 Definitions 3: A model of a single layer feed-forward neural network is called a compact structure, if 𝛿𝛿𝐇𝐇 of 

Definition 1 is the least square norm of the residual error and the number of optimal hidden 
nodes, L, of Definition 2 is minimal. 

 
3.2 Objective Relation Estimation  
 
The objective relation is the key to learning the model in each iteration. It plays an important role in multiple-output 
neural network architectures and obtaining an optimal node and model. In practice, the objective relation can be 
estimated by an ORL function and used for obtaining the optimal node and model as defined in Definitions 1 and 2. 
Here, principal component analysis (PCA) was used as the ORL function. The PCA generated the first principal 
component (PC) and successive PCs for representing the highest and successive variances of relative objectives, 
respectively. Moreover, all PCs must be orthogonal to each other. According to PCA’s properties, the objective 
relation, 𝐄𝐄�𝑟𝑟 ∈ ℝ𝑁𝑁×𝑃𝑃, can be estimated by applying PCA on a residual error matrix: 
 
 ( )r r r Pf ==E E E V , (30) 
 
where  𝑓𝑓(·):ℝ𝑀𝑀 → ℝ𝑃𝑃  is PCA method that used as objective relation learning function, 𝐄𝐄𝑟𝑟 ∈ ℝ𝑁𝑁×𝑀𝑀  is a relative 
objective matrix with respect to M objectives, which is a residual error matrix, 𝐄𝐄�𝑟𝑟 ∈ ℝ𝑁𝑁×𝑀𝑀  is the residual error 
matrix with respect to M objectives, where the mean is subtracted from each column, and 𝐕𝐕𝑃𝑃 ∈ ℝ𝑁𝑁×𝑃𝑃  is the matrix of 
the eigenvectors, selected from the first P elements that satisfy 90% of eigenvalues. This eigenvalue threshold 
comes from our preliminary experiments, the threshold was set to be 90 %, as a trade-off between obtaining a 
compact and nearly optimal model. Furthermore, our eigenvalue threshold was similar to that of PCA-ELM and the 
commonly accepted rule of thumb [27]. The residual error matrix and covariance matrix are computed from: 
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The PCA coefficient calculated from the covariance matrix of the residual error matrix is computed as 
 
  P P PCov = ΛV V , (33) 
 
where Λ𝑃𝑃 ∈ ℝ𝑃𝑃×𝑃𝑃 is the eigenvalue matrix that collects the variance of corresponding PCA coefficients along the 
diagonal. 
 
3.3 Multiple Optimal Hidden Node Construction 
 
Although the original analytical incremental learning (AIL) was an efficient and effective learning method, it added 
a single optimal hidden node at each learning iteration. Thus, AIL required many learning iterations. Therefore, we 
designed a principal component analysis AIL (PCA-AIL) method, that can obtain multiple optimal hidden nodes in 
each learning iteration. Thus, PCA-AIL required fewer learning iterations than the original AIL. In other words, 
PCA-AIL converged faster than the original AIL. The optimal hidden nodes were created by applying the objective 
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relation matrix with P columns. The PCs at each iteration of the learning process obtained P hidden nodes. The 
hidden nodes of PCA-AIL were determined in the same way as the original AIL. Thus, Eq. (6) can be rewritten as 
 
 ( ) ( )1k k

rδ −=H CE , (34) 
 
where 𝛿𝛿𝐇𝐇(𝑘𝑘) ∈ ℝ𝑁𝑁×𝑃𝑃 are the P newly created hidden nodes at the k-th iteration and 𝐂𝐂 ∈ ℝ𝑃𝑃 is the scaling parameter 
vector with respect to each P columns of the objective relation matrix. Scaling parameters are obtained in the same 
way as Eq. (25) Then, Eq. (34) can be simplified to 
 
 ( ) ( 1)ˆ ˆZ k

k r
−=XW CE , (35) 

 
where 𝐖𝐖� ∈ ℝ𝑛𝑛+1×𝑃𝑃 is the input layer weight matrix and 𝐗𝐗� ∈ ℝ𝑁𝑁×𝑛𝑛+1 is the input matrix containing a vector of ones. 
The input layer weight of the k-th hidden nodes from Eq. (35) can be solved by linear algebra as follows. 
 
 ( )1 ( 1)ˆ ˆ Z k
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The optimal input layer weight of the ridge regression as defined by Eq. (36) is computed by 
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Hence, at k-th iteration, we obtained P optimal hidden nodes approximated with the objective relation. 
 
 ( ) ( )*ˆ ˆZ k

kδ = XWH  (38) 

 
After the optimal hidden nodes were completely created, then the hidden layer parameters were determined from the 
newly created hidden node connecting to each output node and the existing hidden layer parameters were also 
updated. The hidden layer parameter determination of the k-th iteration is 
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and the optimal hidden layer parameter determination of the next iteration can be computed recursively as 
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where 𝐒𝐒(𝑘𝑘+1) ∈ ℝ𝐿𝐿𝑘𝑘+1×𝐿𝐿𝑘𝑘+1 is written in a block matrix form as 
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where 𝐒𝐒11 = 𝐒𝐒(𝑘𝑘) , 𝐒𝐒12 = 𝐇𝐇(𝑘𝑘)T𝛿𝛿𝐇𝐇(𝑘𝑘) , 𝐒𝐒21 = 𝛿𝛿𝐇𝐇(𝑘𝑘)T𝐇𝐇(𝑘𝑘) , 𝐒𝐒21 = 𝛿𝛿𝐇𝐇(𝑘𝑘)T𝛿𝛿𝐇𝐇(𝑘𝑘) , 𝐿𝐿𝑘𝑘+1  is the total number of hidden 
nodes at the (k + 1)-th iteration, with 𝐿𝐿𝑘𝑘 existing hidden nodes and P newly created hidden nodes. The inversion of 
𝐒𝐒(𝑘𝑘+1),  
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where 𝐀𝐀 = 𝐒𝐒22 − 𝐒𝐒12T 𝚯𝚯 is the Schur complement and 𝚯𝚯 = 𝐒𝐒11−1𝐒𝐒12. The stopping criteria for PCA-AIL are the same 
as for AIL. However, the linear dependence criterion differs from the original one, since the Schur complement of  
PCA-AIL is not a scalar. In addition, the determinant of the Schur complement can be used to confirm the linear 
dependence of the newly created and existing hidden nodes. In other words, when the relation between the 
determinant 𝐀𝐀 and 𝐒𝐒𝟐𝟐𝟐𝟐 is less than the expected value, 0 < 𝜂𝜂 ≪ 1, the newly created hidden nodes are dependent on 
the existing hidden nodes. 
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As can be seen in Eqs. (37) and (42), the time complexities are for the input layer weight determination 𝑂𝑂(𝑛𝑛3) and 
hidden layer parameter determination is 𝑂𝑂(𝐿𝐿𝑘𝑘2+𝜀𝜀), where 𝑛𝑛 is the number of input features and 𝐿𝐿𝑘𝑘  is the number of 
hidden nodes at the k-th iteration such that 0 <  𝜀𝜀 <  1. Therefore, the time complexity of PCA-AIL depends on the 
maximum of the number of input features and the number of hidden nodes. Usually, the overall complexity is 
𝑂𝑂(𝐿𝐿𝑘𝑘2+𝜀𝜀)  since there are k learning iterations. However, in the worst case when 𝑛𝑛  is much larger than 𝐿𝐿𝑘𝑘 , the 
complexity is dominated by 𝑂𝑂(𝑛𝑛3). The accuracy and compactness of the PCA-AIL was demonstrated in subsection 
4.2.  
 
The learning procedure of the PCA-AIL mainly differed from the original AIL in the objective relation used in 
optimal hidden node construction. It can be briefly explained as follows.  
 

1. Set 𝑘𝑘 ← 0 and initialize a starting residual error, 𝐄𝐄𝑟𝑟
(0), from the hidden layer bias, 𝐇𝐇(0) = 𝐡𝐡0 = 𝟏𝟏𝑁𝑁×1, by 

using the hidden layer parameters calculated by Eq. (39). 
2. 𝑘𝑘 ← 𝑘𝑘 + 1,  
3. Calculate the objective relation 𝐄𝐄�𝑟𝑟

(𝑘𝑘)from the residual error matrix of the previous iteration, 𝐄𝐄𝑟𝑟
(𝑘𝑘−1), by using  

Eq. (30). 
4. Determine the input layer weights and hidden layer biases of the k-th iteration, 𝐖𝐖�𝑘𝑘∗, by using Eq. (37) with 

respect to the objective relation,  
5. Calculate P hidden nodes output 𝛿𝛿𝐇𝐇(𝑘𝑘) by using Eq. (38). 
6. Calculate 𝐒𝐒(k), 𝐒𝐒22, and 𝐀𝐀 by using Eqs. (41) and (42).  
7. After that, if the linearly dependent criterion defined in Eq. (43) is satisfied, then stop adding nodes. 
8. Calculate the hidden layer parameters of the current iteration, 𝛽𝛽∗(𝑘𝑘), and update existing hidden node by 

using Eq. (40). 
9. Estimate the output and calculate the residual error of the current iteration, 𝐄𝐄𝑟𝑟

(𝑘𝑘). 
10. If the relative residual error of the current iteration is less than an expected criterion or the maximum number 

of hidden nodes is satisfied with a condition, then stop adding nodes and terminate. 
11. Repeat Step 2. 
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4.0 EXPERIMENTS AND DISCUSSION 
 
In this section, PCA-AIL was evaluated in three ways: (i) the improvement of convergence rate and multiple-output 
architecture, (ii) the performance improvement from the output layer bias, and (iii) the performance evaluation on 
real-world datasets. For these assessments, three experiments were set up to test each of these aspects. 
 
4.1 Evaluation Metric and Data Preparation 
 
The performance metrics for all test methods were the root mean square error (RMSE), the number of hidden nodes, 
and the training and testing time. RMSE is a prediction performance metric, measuring the difference between the 
predicted and desired outputs: 
 

 
( )2*

1 1

N M

ij ij
i j

t t

RMSE
N

= =

−

=
∑∑

, (44) 

 
where 𝑡𝑡𝑖𝑖𝑗𝑗 ∈ ℝ is the desired output of the i-th sample on the m-th objective, 𝑡𝑡𝑖𝑖𝑗𝑗∗ ∈ ℝ is the predicted output of the i-th 
sample on the m-th objective, N is the number of samples, and M is the number of the objectives. A low RMSE value 
means that a learning method can correctly predict, whereas a high RMSE value means that a learning method  
 

Table 2: Specifications of benchmark datasets 
 

Group Name Train Test Feature Objectives Criterion 

1 

andro 33 16 30 6 0.20 

edm 103 51 16 2 0.20 

slump 69 34 7 3 0.20 

2 

Enb 512 256 8 2 0.08 

jura 239 120 15 3 0.10 

sf1 215 108 10 3 0.15 

sf2 711 355 10 3 0.07 

wq 707 353 16 14 0.25 

3 

atp1d 225 112 411 6 0.10 

atp7d 197 99 411 6 0.10 

oes10 269 134 298 16 0.07 

oes97 223 111 263 16 0.08 

4 
rf1 6003 3002 64 8 0.08 

scm20d 5977 2989 61 16 0.07 

5 
rf2 5567 2784 576 8 0.10 

scm1d 6535 3268 280 16 0.10 
 

cannot correctly predict. The number of hidden nodes represents the complexity of the models; that is, a small 
number of hidden nodes mean that the model is more compact whereas a large number of hidden nodes mean that 
the model is less compact. Lastly, the training and testing time evaluates the learning speed. 
 
Real-world datasets were used in experiments. These datasets were retrieved from Spyromitros-Xioufis et al. [25] 
and UCI repository [26], which contain various sample and feature sizes and consist of five groups: (i) Datasets with 
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small size and few features - Andromeda (andro), Electronic discharge management (edm), and Slump test (slump); 
(ii) Datasets with medium size and few features - Energy building (enb), Jura, Solar Flare (sf1, sf2) and Water 
quality (wq); (iii) Datasets with medium size and many features - Airline ticket price (atp1d, atp7d) and 
Occupational employment survey (oes10, oes97); (iv) Datasets with large size and few features - River flow 1 (rf1) 
and Supply chain management 20 days (scm20d); and (v) Datasets with large size and many features - River flow 2 
(rf2) and Supply chain management 1 day (scm1d). Table 2 summarizes characteristics of the benchmark datasets. 
 
The experiment used the holdout cross-validation method, which randomly selects 75% of samples as the training 
set and 25% of samples as the testing set. Furthermore, the samples were pre-processed by removing samples with 
missing values, then the input data was normalized into [-1, 1], whereas the output data is normalized into [0, 1]. To 
evaluate the stability of the proposed and the baseline methods, each method was executed 30 times for each dataset. 
All the test algorithms, implemented with MATLAB, on an Intel Xenon E3-1226 v3 (3.30 GHz) with 8 GB RAM 
PC. The hyperparameters of both methods were obtained by cross-validation. The hyperparameters that provide the 
smallest RMSE were selected. The maximum number of hidden nodes was selected from a set of multiples of 10  
- {10, 20, 30, …, 100}. The maximum number of hidden nodes for PCA-ELM was equal to the feature size of the 
datasets. The regularization parameter, which is used on ELM [20], PCA-ELM [6], and PCA-AIL, was selected as 
powers of 2 - {2-25, 2-24, 2-23, …, 210}. The size of the adding and searching group that was used in EM-ELM [4] and 
EI-ELM [10], were both selected from the set - {5, 10, 15, 20}. The expected learning accuracy criterion that is used 
in EM-ELM [4] and EI-ELM [10] was selected from {0.01, 0.02, 0.04, 0.06, …, 0.30} as summarized in Table. 2. 
The error reduction in CP- and DP-ELM was 0.001 (to 3-digit precision) [5]. The learning criteria for PCA-AIL, η is 
0.00001 (5-digit precision) was taken from Alfarozi et al. [13]. The activation function of the baseline methods was 
a sigmoid. On the other hand, our method used a hyperbolic tangent activation function. 

 
Fig. 6: Learning accuracy of modified AILs and PCA-AILs vs learning iteration 

 

 
Fig. 7: Number of hidden nodes of modified-AIL-4 and PCA-AILs on each learning iteration 
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4.2 Learning Accuracy Comparison between Modified AILs and PCA-AIL 
 
The first experiment illustrated the improvement of convergence rate and multiple-output architecture according to 
Definitions 1 and 2. Following these definitions, AIL that was modified by selecting residual error suffered from a 
lack of objective relations. This problem caused the modified AIL to not provide an optimal node and structure. 
Furthermore, it caused a slow convergence rate. The baseline methods were modified AILs, that were fell into two 
groups. The first group was modified by selecting the residual error that corresponds to the first, second, and third 
objectives, called Modified-AIL-1, Modified-AIL-2, and Modified-AIL-3. The second group was modified by 
adding all hidden nodes that were obtained from the residual error matrices, Modified-AIL-4. Our method was used 
with two variants, singly added hidden nodes (PCA-AIL-1) and multiple added hidden nodes (PCA-AIL-2). The 
first experiment used the Airline ticket prices 7-day dataset (atp7d), which has a small and complex data pattern. 
Moreover, there is a relation between the objectives.  
 
Fig. 6 shows that the first three baseline methods did not predict correctly, since they only preserved the 
corresponding objective, with RMSEs of 0.156, 0.141, and 0.120. On the other hand, our methods, PCA-AIL-1 and 
PCA-AIL-2, outperformed those baseline methods by reducing the RMSE factors of 4.20 (PCA-AIL-1) and 3.88 
(PCA-AIL-2), because they were able to preserve relations among the objectives. Moreover, although the last 
method, Modified-AIL-4, can avoid the lost detail problem, its hidden nodes were not optimal. This problem came 
from Modified-AIL-4 not approximating the hidden node with the relation between the objectives. Hence, our 
methods achieved better prediction than Modified-AIL-4 by 1.20 (PCA-AIL-1) and 1.11 times (PCA-AIL-2). This 
showed that selecting the residual error to approximate hidden nodes caused inefficient hidden nodes. Moreover, 
using the relation between the objectives improved the hidden node effectiveness and convergence rate. Then it can 
be concluded that this experiment demonstrates Definitions 1 and 2.  
 

 
Fig. 8: Learning accuracy for three learning methods: ELM, Bias-ELM, and PCA-AIL 

 

 
Fig. 9: Number of hidden nodes for three learning methods: ELM, Bias-ELM, and PCA-AIL 
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Furthermore, we assumed that adding multiple hidden nodes at each iteration would improve the convergence rate. 
Therefore, to show this, the number of hidden nodes was also considered. Fig. 6 shows that PCA-AIL-2 achieved 
the best prediction performance at fewer learning iterations, with RMSE of 0.038 after 3 iterations. On the other 
hand, the first three of the modified AIL group and PCA-AIL-1 required more than 20 iterations to achieve RMSE 
0.038. Moreover, PCA-AIL-2 generated a large number of hidden nodes in a few iterations, as shown in Fig. 7. 
Although PCA-AIL-1 is not as effective as PCA-AIL-2, PCA-AIL-1 converged faster than the Modified-AILs with 
single added hidden nodes. This showed that adding multiple hidden nodes at each iteration increased the 
convergence rate.  
 
4.3 Performance Improvement from Output Layer Bias 
 
The second experiment demonstrated that the output layer bias would improve the performance, especially for 
solving regression tasks with a small-sized SLFN. In this experiment, Bias-ELM implemented with Eq. (45) derived 
from Eq. (1) by adding an output bias term, 𝛽𝛽0. 
 

 ( )0 0
1

g
L

j j j
j

b b b
=

= ⋅ + +∑T X w  (45) 

 
where 𝐓𝐓0 ∈ ℝ𝑁𝑁×𝑀𝑀 is the desired output matrix of the Bias-ELM with N samples and M objectives, g(·) ∶ ℝ → ℝ is 
an activation function, 𝐗𝐗 ∈ ℝ𝑁𝑁×𝑛𝑛 is the input matrix with N samples and n features, 𝐰𝐰𝑗𝑗 ∈ ℝ𝑛𝑛×1 is the input layer 
weight vector that connects each input node to the j-th hidden node, 𝑏𝑏𝑗𝑗 ∈ ℝ is the j-th hidden node bias, 𝛽𝛽𝑗𝑗 ∈ ℝ1×𝑀𝑀 
is the hidden layer weight vector that connects the j-th hidden node to every output node, 𝛽𝛽0 ∈ 𝑅𝑅𝑀𝑀  is the vector of 
output layer biases, and L is the number of hidden nodes. Weight and bias parameters of Bias-ELM were determined 
in the same way as of the original ELM. The learning accuracy, RMSE, and the number of hidden nodes were used 
as a performance metric. As shown in Fig. 8, Bias-ELM outperformed the original ELM for learning accuracy, with 
better RMSEs on 14 of 16 datasets: andro, edm, slump, enb, jura, sf1, wq, atp1d, atp7d, oes97, rf1, scm20d, rf2, and 
scm1d. For Bias-ELM, the RMSEs were lower by factors ranging from 1.01 to 1.72 less the original ELM. The other 
two datasets: sf2 and oes10 were comparable. At the same time, the number of hidden nodes for Bias-ELM was less 
than for the original ELM in most cases, except for sf1, oes10, oes97, and rf1 datasets - see Fig. 9. This improve-
ment came from the output layer bias that can be considered as a synthesized hidden node. In contrast, activation of 
output nodes of ELM-based methods was a linear combination; hence, the output layer bias is considered as a y-
intercept parameter, which gives the linear equation an additional degree of freedom. In the same way, the learning 
accuracy of PCA-AIL was better than that of ELM and Bias-ELM for all except one (sf1) of the 16 datasets, and the 
number of hidden nodes of PCA-AIL was less than for ELM and Bias-ELM in almost every case. 

 
4.4 Performance Evaluation 
 
The third experiment evaluated and compared the performance between the PCA-AIL and the baseline methods, 
based on 16 real-world benchmark datasets. Results are shown in Tables 3 – 6. The experimental results are 
discussed below: 
 
Table 3 compares the predictions. It can be seen that the PCA-AIL outperformed the others in terms of RMSE on 
dataset groups 1, 3, and 5. Moreover, PCA-AIL was better in 3 out of 5 datasets in group 2. This achievement came 
from the objectives of each dataset were related and PCA-AIL extracted the relationships, as additional features: an 
example from the Airline Ticket Price datasets follows. The objectives of Airline Ticket Price dataset were to 
predict next-day ticket (atp1d) prices or minimum price observed over the next 7 days (atp7d) for 6 target flight 
preferences: any airline and any number of stops, any airline non-stop only, Delta Airlines, Continental Airlines, 
AirTran Airlines and United Airlines. In the prediction, not only the number of days between the observation date 
and the departure date or day-of-the-week could be used to predict the ticket price, but the relation between ticket 
prices, among the companies, could be used to predict future prices. For example, if the prices of United Airlines 
were changed, then it may affect prices of other companies. PCA-AIL achieved better predictions than ELM, EM-
ELM, CP-ELM, DP-ELM, PCA-ELM, and EI-ELM by multiples of from 1.22 to 2.03, in the atp1d dataset. For the 
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atp7d dataset, PCA-AIL achieved better predictions by factors from 1.31 to 1.67. Moreover, PCA-AIL provided the 
lowest standard deviation of prediction performance on most datasets and thus showed stable performance. Thus, 
using the objective relation, to preserve relationships among the objectives efficiently, extended the ability of AIL 
not only on objective relation learning and multiple-output architecture, in Table 1, but also stable prediction.  
 
Table 4 shows the number of hidden nodes for each method. In overall, the number of hidden nodes for PCA-AIL is 
less than that of all other test methods, except PCA-ELM, at 6.33 nodes. Based on Definition 3, PCA-AIL did not 
obtain the most compact structure, but it achieved a compact optimal structure - see Tables 3 and 4. Thus PCA-AIL 
method not only provides the optimal structure but also a compact structure. For example, PCA-AIL achieved the 
best prediction performance, 0.07, and the number of hidden nodes, 4.4, in the sf2 dataset. For the sf1 dataset, PCA-
AIL RMSE essentially overlapped ranges for the other methods and showed more than 2.9 nodes less for all the 
other methods. This showed that the relative objective was important for optimal hidden node construction, which 
strongly supports PCA-AIL to achieve redundant node avoidance and a compact structure.  
 
From Tables 3 and 4, even though in most cases PCA-ELM achieved the minimum number of hidden nodes, it did 
not achieve the minimum RMSEs. In this situation, PCA-ELM did not satisfy our Definition 3. Therefore, PCA-
ELM did not generate a compact structure.  
 
Table 5 compares training times. PCA-AIL was in the top three of the fastest learning methods. Moreover, for large 
size datasets, groups 4 and 5 in Table 2, PCA-AIL was faster than EM-ELM, CP-ELM, DP-ELM, and EI-ELM by 
factors from 2.3 to 22.4 times. In addition, PCA-AIL outperformed PCA-ELM, which is the top one, on large 
feature datasets - atp1d (1.2 times) and oes97 (1.1 times). When the number of hidden nodes was considered along 
with training time, PCA-AIL also built a large structure faster than most other methods; for example, it built the 
largest structure on the rf2 dataset, but generated the structure faster than other methods, such as CP-ELM, DP-ELM 
and EI-ELM, 3.1 to 12.0 times faster. This achievement came from the multiple hidden nodes adding and the basis 
of the original AIL. When prediction was also considered, PCA-AIL achieved accurate predictions with acceptable 
training time. This implied that the PCA-AIL was also a fast learning machine. 
 
Table 6 compares testing times. PCA-AIL predicted the result faster than all the other methods (from 1.1 to 3.9 
times), except for PCA-ELM. PCA-ELM achieved the fast testing speed because it provided a small structure, as 
shown in Table 4, and it did not have bias parameters. From Tables 3 and 4, it is clear that PCA-AIL provides the 
most compact optimal structure. Therefore, the slower testing speed of PCA-AIL is acceptable, since it determined 
bias parameters that significantly improved prediction performance.  

 
5.0 CONCLUSION 
 
A new Analytical Incremental Learning based on Principal Component Analysis, PCA-AIL, achieved a compact 
optimal structure and supported multiple-output regression tasks. The contributions of PCA-AIL were the use of an 
adaptive weight determination strategy and an objective relation learning function (ORL), that obtained multiple 
optimal nodes for constructing the hidden layer of a single layer feed-forward neural network. The algorithm 
implemented on our Definitions as three main steps. First, the relative objectives of a dataset were calculated, and 
then the ORL function was applied to them. Second, the optimal node construction function generated the optimal 
nodes, and finally, the optimal model was constructed. The generated model was tested with 16 multiple-objective 
regression datasets. Compared to six other methods (ELM, EM-ELM, CP-ELM, DP-ELM, PCA-ELM, EI-ELM), 
PCA-AIL performed better than most of the other methods in terms of RMSE - 0.11261 ± 0.00911, number of 
hidden nodes - 19.9 nodes, training time - 0.0466 second, and testing time - 0.0017 second. Thus PCA-AIL achieved 
a fast testing speed, a stable result, a compact model and more accurate performance. Using the objective relation to 
preserve relationships was the key to achieving these objectives efficiently. 
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Table 3: Relative prediction performance (RMSE) on benchmark datasets 
 

Dataset 
ELM EM-ELM CP-ELM DP-ELM PCA-ELM EI-ELM PCA-AIL 

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

andro 0.3938 0.0714 0.2323 0.0291 0.2465 0.0442 0.2466 0.0217 0.2627 0.0713 0.2566 0.0450 0.2064 0.0341 

edm 0.3920 0.0759 0.2158 0.0119 0.2161 0.0177 0.2251 0.0138 0.2163 0.0137 0.2218 0.0175 0.2069 0.0132 

slump 0.4070 0.0704 0.2086 0.0240 0.2045 0.0227 0.2197 0.0162 0.2222 0.0227 0.2116 0.0202 0.2037 0.0148 

enb 0.3002 0.1184 0.0854 0.0050 0.0801 0.0047 0.1861 0.0305 0.0599 0.0052 0.0612 0.0050 0.0810 0.0031 

jura 0.2150 0.0446 0.1177 0.0111 0.1147 0.0080 0.1524 0.0132 0.1119 0.0083 0.1116 0.0083 0.1024 0.0069 

sf1 0.1505 0.0227 0.1547 0.0238 0.1572 0.0169 0.1490 0.0170 0.1604 0.0183 0.1558 0.0200 0.1535 0.0212 

sf2 0.0705 0.0098 0.0693 0.0088 0.0710 0.0086 0.0677 0.0073 0.0692 0.0069 0.0708 0.0074 0.0662 0.0063 

wq 0.2760 0.0097 0.2521 0.0057 0.2490 0.0045 0.2485 0.0026 0.2503 0.0096 0.2489 0.0049 0.2448 0.0033 

atp1d 0.1868 0.0277 0.1448 0.0120 0.1267 0.0114 0.1122 0.0082 0.1190 0.0135 0.1152 0.0105 0.0915 0.0047 

atp7d 0.1850 0.0274 0.1578 0.0173 0.1492 0.0139 0.1370 0.0151 0.1509 0.0211 0.1447 0.0160 0.1112 0.0087 

oes10 0.0873 0.0235 0.0691 0.0105 0.0730 0.0173 0.0605 0.0112 0.1210 0.1247 0.1332 0.2090 0.0467 0.0140 

oes97 0.0993 0.0251 0.0795 0.0176 0.0826 0.0239 0.0645 0.0114 0.1055 0.0862 0.1259 0.1875 0.0538 0.0120 

rf1 0.1964 0.0423 0.0703 0.0014 0.0666 0.0026 0.1937 0.0020 0.0436 0.0014 0.0438 0.0012 0.0509 0.0009 

scm20d 0.2372 0.1151 0.1013 0.0021 0.0989 0.0015 0.1133 0.0034 0.0894 0.0014 0.0896 0.0012 0.0895 0.0007 

rf2 0.2019 0.0441 0.1065 0.0077 0.1006 0.0021 0.1081 0.0026 0.0944 0.0050 0.0950 0.0041 0.0361 0.0011 

scm1d 0.2402 0.0790 0.0819 0.0031 0.0825 0.0051 0.1053 0.0019 0.0740 0.0071 0.0725 0.0023 0.0571 0.0008 
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Table 4: Number of hidden nodes on benchmark datasets 
 

Dataset 
ELM EM-ELM CP-ELM DP-ELM PCA-ELM EI-ELM PCA-AIL 

Max Avg. SD Max Avg. SD Max Avg. SD Max Avg. SD Max Avg. SD Max Avg. SD Max Avg. SD 

andro 90 90.00 - 10 9.00 2.03 10 9.97 0.18 10 8.67 0.48 30 3.63 0.49 30 13.87 5.15 10 7.33 1.30 

edm 50 50.00 - 20 13.67 3.20 10 9.70 0.47 10 15.50 1.14 16 5.20 0.41 50 32.10 13.67 20 16.40 1.10 

slump 70 70.00 - 20 10.33 1.83 10 9.83 0.38 10 7.63 0.67 7 5.00 - 40 20.67 10.19 10 6.90 0.66 

enb 70 70.00 - 40 21.17 5.03 100 93.33 3.72 100 62.70 3.36 8 4.00 - 90 86.13 14.75 10 6.60 0.56 

jura 60 60.00 - 30 19.33 2.86 30 29.63 0.49 30 25.47 0.90 15 6.33 0.48 70 53.20 11.77 10 9.70 2.58 

sf1 40 40.00 - 30 18.50 10.84 10 10.00 0.00 10 8.93 0.25 10 10.97 0.18 20 11.73 9.14 10 6.00 - 

sf2 90 90.00 - 10 8.33 2.40 10 10.00 0.00 10 8.83 0.38 10 10.00 - 80 29.50 30.63 10 4.40 0.81 

wq 100 100.00 - 20 9.50 2.01 20 20.00 0.00 20 18.90 0.31 16 7.00 - 50 20.87 9.36 20 11.00 - 

atp1d 80 80.00 - 20 8.33 2.73 20 19.80 0.41 40 34.40 1.04 411 16.40 0.67 20 7.70 4.49 10 10.00 - 

atp7d 60 60.00 - 20 11.33 3.70 20 19.83 0.38 40 26.27 0.87 411 22.13 0.68 20 5.40 2.62 30 30.20 3.87 

oes10 70 70.00 - 10 5.67 1.73 10 10.00 - 10 8.90 0.31 298 11.73 2.65 10 1.77 0.68 20 13.43 2.74 

oes97 60 60.00 - 10 5.67 1.73 10 10.00 - 10 9.00 - 263 11.53 3.25 10 1.93 0.52 20 14.53 1.96 

rf1 100 100.00 - 30 19.67 3.20 100 90.20 2.01 100 70.73 2.00 64 3.00 - 80 64.30 15.94 30 30.00 - 

scm20d 50 50.00 - 40 35.00 3.94 100 86.87 3.03 100 64.30 1.84 61 11.00 - 100 79.37 18.19 20 12.00 - 

rf2 100 100.00 - 90 78.33 9.13 100 97.73 1.41 100 81.97 1.73 576 64.40 1.07 100 89.60 12.32 100 100.00 - 

scm1d 80 80.00 - 70 49.17 8.10 100 88.30 2.63 100 51.53 1.78 280 20.00 - 100 59.30 15.74 50 39.97 0.18 

  



 
 

A Compact Optimal Learning Machine (Special Issue 2019). pp. 132-156 
 

155 
Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 

Table 5: Training times on benchmark datasets 
 

Dataset 
ELM EM-ELM CP-ELM DP-ELM PCA-ELM EI-ELM PCA-AIL 

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD 

andro 0.0027 0.0024 0.0003 0.0001 0.0194 0.0417 0.0017 0.0024 0.0012 0.0005 0.0020 0.0007 0.0013 0.0002 

edm 0.0009 0.0001 0.0009 0.0002 0.0116 0.0074 0.0142 0.0035 0.0007 0.0005 0.0160 0.0082 0.0021 0.0007 

slump 0.0051 0.0017 0.0006 0.0002 0.0136 0.0183 0.0042 0.0022 0.0005 0.0003 0.0127 0.0070 0.0013 0.0006 

enb 0.0019 0.0009 0.0042 0.0015 0.6962 0.0962 1.9796 0.2928 0.0005 0.0003 0.0365 0.0100 0.0021 0.0003 

jura 0.0016 0.0002 0.0031 0.0010 0.0675 0.0120 0.0315 0.0075 0.0007 0.0004 0.0137 0.0031 0.0016 0.0004 

sf1 0.0009 0.0001 0.0021 0.0014 0.0107 0.0015 0.0028 0.0005 0.0010 0.0004 0.0065 0.0055 0.0012 0.0003 

sf2 0.0034 0.0003 0.0031 0.0021 0.0122 0.0017 0.0044 0.0005 0.0011 0.0005 0.0223 0.0230 0.0020 0.0005 

wq 0.0050 0.0006 0.0066 0.0036 0.0501 0.0070 0.0134 0.0013 0.0010 0.0004 0.0701 0.0344 0.0039 0.0008 

atp1d 0.0042 0.0014 0.0010 0.0007 0.0390 0.0028 0.0640 0.0114 0.0330 0.0168 0.0064 0.0031 0.0282 0.0046 

atp7d 0.0055 0.0028 0.0008 0.0002 0.0418 0.0074 0.0358 0.0065 0.0300 0.0142 0.0050 0.0019 0.0330 0.0073 

oes10 0.0025 0.0005 0.0007 0.0010 0.0149 0.0040 0.0056 0.0015 0.0188 0.0101 0.0036 0.0011 0.0232 0.0023 

oes97 0.0023 0.0013 0.0004 0.0005 0.0187 0.0150 0.0044 0.0008 0.0181 0.0257 0.0028 0.0007 0.0162 0.0008 

rf1 0.0157 0.0040 0.3553 0.0216 1.4046 0.1105 3.0543 0.2777 0.0055 0.0010 1.5641 0.4036 0.0624 0.0098 

scm20d 0.0124 0.0052 0.3384 0.0082 2.0416 0.0169 5.6079 0.1621 0.0058 0.0019 2.9929 0.7132 0.0194 0.0020 

rf2 0.0920 0.0374 0.3400 0.0184 1.3022 0.0557 1.9622 0.1258 0.1006 0.0072 5.1056 0.7497 0.4245 0.0300 

scm1d 0.0226 0.0026 0.4100 0.0126 1.8946 0.0868 2.7918 0.0565 0.0324 0.0023 4.4223 1.2027 0.1232 0.0277 
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Table 6. Testing times on benchmark datasets 
 

Dataset 
ELM EM-ELM CP-ELM DP-ELM PCA-ELM EI-ELM PCA-AIL 

Avg.  
(10-4) 

SD  
(10-4) 

Avg.  
(10-4) 

SD  
(10-4) 

Avg.  
(10-4) 

SD  
(10-4) 

Avg.  
(10-4) 

SD  
(10-4) 

Avg.  
(10-4) 

SD  
(10-4) 

Avg.  
(10-4) 

SD  
(10-4) 

Avg.  
(10-4) 

SD  
(10-4) 

andro 0.67 0.12 0.54 0.16 1.62 3.66 0.40 0.15 0.17 0.06 0.48 0.14 0.25 0.03 

edm 0.73 0.11 0.97 0.31 1.85 0.48 2.14 0.64 0.34 0.24 2.70 0.85 0.58 0.22 

slump 1.51 0.64 1.07 0.33 1.30 0.24 1.53 0.87 0.25 0.10 2.30 0.88 0.28 0.12 

enb 1.88 0.39 3.35 1.66 11.30 4.50 9.39 7.63 0.53 0.24 11.00 2.01 0.99 0.26 

jura 1.61 0.18 1.59 0.62 5.82 3.01 4.80 2.78 0.57 0.49 3.19 0.46 0.65 0.16 

sf1 0.89 0.09 2.59 2.10 2.89 0.57 2.45 0.26 0.67 0.33 2.98 0.99 0.79 0.23 

sf2 4.10 0.64 2.53 0.38 4.60 0.93 4.07 0.40 1.11 0.48 11.60 6.12 2.41 0.57 

wq 8.74 1.45 2.77 1.07 12.90 2.32 9.75 1.01 1.44 0.67 4.99 2.05 2.32 0.40 

atp1d 7.23 3.14 8.75 1.41 13.60 2.57 15.90 2.40 2.28 1.51 11.70 2.90 5.90 3.85 

atp7d 10.70 6.62 7.15 1.23 15.50 2.98 17.20 4.51 1.40 0.59 10.20 3.65 6.71 0.72 

oes10 3.82 0.86 12.10 3.16 6.32 2.06 7.02 4.83 1.02 0.29 9.70 1.48 3.87 1.63 

oes97 3.47 2.00 3.94 0.41 5.97 3.47 5.54 2.93 0.90 0.34 6.14 1.36 2.07 0.23 

rf1 46.10 14.40 31.30 7.08 160.00 33.20 138.00 30.90 7.71 1.04 36.10 5.50 32.10 4.35 

scm20d 39.20 15.80 40.40 3.28 142.00 9.96 111.00 7.33 8.88 3.64 41.60 5.84 13.60 2.25 

rf2 375.00 156.00 120.00 12.60 412.00 21.80 380.00 16.40 40.50 7.32 123.00 12.90 131.00 10.90 

scm1d 87.70 10.80 73.90 5.84 293.00 20.60 229.00 10.20 24.80 3.18 94.70 14.80 73.80 9.59 
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