
Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

1 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

SWARM OPTIMIZATION ALGORITHM BASED ON THE ANT COLONY LIFE CYCLE 
 

Jiraporn Kiatwuthiamorn1,  Arit Thammano2 

 

1,2Faculty of Information Technology,  
King Mongkut’s Institute of Technology Ladkrabang,  

Ladkrabang, Bangkok 10520  
Thailand  

 
E-mail: jiraporn.kia@rmutr.ac.th1, arit@it.kmitl.ac.th2 

 
DOI: https://doi.org/10.22452/mjcs.sp2019no2.1 

 
ABSTRACT 
 
Optimization is very important to the success of any business. One technique for solving optimization is swarm 
intelligence; it has been successfully applied to solve a wide range of optimization problems. We devised a new 
swarm intelligence optimization algorithm based on the cooperative behavior of three different kinds of ants in a 
colony. Our algorithm consists of both exploration and exploitation processes to achieve better search performance. 
A new local search, inspired by the foraging of desert ants, was introduced to help the search move away from the 
local optima. Performance was evaluated on 23 standard benchmark functions of varying complexity. Our 
algorithm was able to find the global optima in more than 80 percent of the test functions, whereas the second-place 
algorithm only found around 10 percent of the functions tested. 
 
Keywords: Biologically inspired algorithm, Ant colony life cycle, Swarm intelligence, Optimization algorithm.  
 
1.0  INTRODUCTION 
 
Many researchers have described new algorithms for solving optimization problems. The goal of an optimization is 
to find the best solution to a given problem under some constraints [1]. At present, many optimization algorithms are 
based on natural behaviours. Some of these, the swarm intelligence algorithms, mimic the behavior of living 
creatures. Swarm intelligence algorithms are inspired by animal behavior, such as food-seeking of flocking birds, 
swarming bees, walking ants and swimming bacteria. Two widely known algorithms of this type are Particle Swarm 
Optimization (PSO) and Ant Colony Optimization (ACO). PSO [2] described by Kennedy and Eberhart in 1995, 
was based on the food-seeking behaviors of swarming creatures, such as birds and fish, while Dorigo’s ACO [3] was 
based on the food-seeking behavior of ants. These algorithms have been successfully applied to various kinds of 
optimization problems such as the traveling salesman, scheduling, vehicle routing and classification problems. 
Inspired by these early successes, more algorithms based on some creature behaviours were developed. For 
example, Simon [4] described a Biogeography-Based Optimization (BBO), based on the migration behavior and the 
geography of their habitat. Gong et al. [5] developed BBO further, by applying three mutation operators—Gaussian, 
Cauchy, and Levy—to diversify search solutions, and used their algorithm, called real-coded biogeography-based 
optimization with mutation, to solve a continuous optimization problem more effectively. In 2012, Gandomi and 
Alavi [6] defined a Krill Herd (KH) algorithm based on the behavior of krill, that gather into a large herd to deter an 
attack by a predator. Any movement of the herd must preserve its density and any movement of an individual krill 
depends on the presence of other krill, their foraging activity and random motion. In 2012, Niu and Wang [7] 
presented an adapted Bacterial Colony Optimization, originally based only on individual E. coli behavior throughout 
its life cycle, to include a combination of a chemotaxis strategy and bacterial communication, which is used between 
individuals and between groups to enhance search effectiveness. A widely used Fruit Fly Optimization Algorithm 
(FFA), based on fruit fly food-seeking behavior by visual and olfactory senses, was proposed by Pan [8] in 2012. In 
2014, Pan et al. [9] improved it to better solve high-dimensional continuous function optimization problems, by 
introducing an automatically adjusted food-seeking distance, which was originally fixed. In 2012, Rao et al. [10] 
described a Teaching-Learning-Based Optimization (TLBO), based on influences of teacher and peers on a student. 
It had two operation phases: teacher phase and learner phase. 
 
In this paragraph, some optimization algorithms that are not based on living creatures are explored. In 2012, Lam et 
al. [11] presented a real-coded chemical reaction optimization algorithm inspired by the energy minimization 
principle. In 2015, a Water Cycle Algorithm (WCA), including an evaporation rate, was developed by 
Sadollah et al. for solving both constrained and unconstrained optimization problems [12]. Eskandar et al. [13] 
adapted WCA, which is based on the nature of the water cycle and its downward flow from the source to the sea. 



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

2 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

Sadollah et al. added a feature, that took into account different evaporation rates in different water sources to make 
WCA more effective. Ghaemi and Feizi-Derakhshi [14] introduced a Forest Optimization Algorithm (FOA), that 
was inspired by the longevity of trees in a forest. Its search is based on the germination of seeds, that fell under a 
tree and were carried afar by animals or other natural processes, so that a global search can cover more space. The 
search was also based on the tree age and the survival likelihood of neighboring trees. 
 
In this paper, we describe a new swarm intelligence algorithm, that was inspired by survival behaviors of ants in 
their life cycle. Imitating these behaviors, the algorithm was developed for solving continuous optimization 
problems and its performance was shown to be favorable. 
 
The remainder of this paper consists of the following sections: section 2 describes the life cycle of an ant colony and 
several ant behaviors; section 3 describes our algorithm; section 4 describes the results; and the last section is the 
conclusion.  
 
2.0  BIOLOGICAL BACKGROUND 
 
This section presents the biological background for our algorithm, which includes the life cycle of an ant colony and 
several ant behaviors. 
 
2.1 Life Cycle of an Ant Colony 
 
Ants are social animals, that live and work together, for the survival of the colony as a whole. An ant colony consists 
of a queen, workers and drones (male ants). Each kind of ant has different functions. The queen and drones are 
reproductive; they mostly stay in the nest. When the time and the conditions are suitable for mating, they will fly out 
to mate. Workers are non-reproductive. Workers perform several functions, such as foraging, caring for the queen 
and larvae, cleaning up the nest and defending the nest from attackers. The life cycle of an ant colony can be divided 
into three stages – see Fig 1 [15]. 
 
2.1.1  Founding Stage  
 
The founding stage starts when the time and environmental conditions are suitable for mating. Reproductive ants 
from many colonies fly out to mate in a suitable place, such as a high mound or a large tree. The ants mate while 
they are in the air. Each queen mates with one or more drones. After mating, the drones die and the queen searches 
for a suitable place to start a new colony and to lay eggs. 
  
2.1.2   Ergonomic Stage 
 
This stage occurs while the colony is young and underpopulated. At the beginning of this stage, the queen lays eggs 
that mostly mature to be workers. The workers perform various functions for the survival of the colony. The number 
of ants in the colony grows rapidly, in this stage, and stabilizes to a fairly constant level at the end of the stage. 
 

2.1.3  Reproductive Stage 
 
When the workers have gathered sufficient food and the time and environmental conditions are suitable (which are 
different for different ant species), the queen will lay eggs that will grow up to be reproductive ants and the workers 
will take care of the larvae. The mature reproductive ants wait for the right conditions to fly out of the nest to mate 
and start their own nest. 
 
As described above, each group of ants has a distinct duty, which they perform for the survival of the colony. The 
position of their nest can be thought of as the location of a rich food source. Their queen is like the heart of the 
colony. In our algorithm, the position, that the queen eventually takes, represents the best solution for the problem, 
and the activity, that each ant from each group in the colony undertakes during a period of time in their lives, causes 
a step-change or move toward this best solution. 
 
2.2 Mating Behavior 
 
When the weather, temperature, humidity and the time of the year are right for reproduction, as in the founding 
stage, reproductive ants from many colonies fly out to a suitable place to find their mates. Females mate with one or 
more drones for a short period of time while flying. After mating, the drones die and the females find a suitable 



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

3 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

place to start a new colony (which can be different for different ant species) and shed their wings. Then, the new 
queen starts laying eggs. 
 
Ant mating behavior can be thought of as a means to discover a new and better solution because, after a female ant 
has mated, it will find a place to build its new nest, that is rich with food and far away from predators or other 
competing colonies. 
 
2.3 Foraging Behavior 
 
Foraging is one of the most important worker tasks, since it directly affects the survival of the colony. Different 
species of ants can have different foraging behaviors, mainly depending on the location of their habitat. Some 
species of ants follow a pheromone trace to move along a path toward a food source, while some desert species 
follow their leader who navigates a path, based on landmarks [16-19]. In our algorithm, foraging behavior, based on 
landmarks, is the local search for the best solution. 
 
2.4 Migration Behavior 
 
A colony of ants may migrate to build a new nest in a new place, when the colony is threatened by predators or 
when the ants have found a richer food source. Workers carry the queen and larvae to the new place. In our 
algorithm, ant migration to move their queen and build a nest in a more suitable place represents diverse searches, 
converging to the best solution. 
 

 
Fig. 1: Life cycle of an ant colony 

 
3.0  OPTIMIZATION ALGORITHM INSPIRED BY THE LIFE CYCLE OF AN ANT COLONY 
 
From fossil records, dated over millions of years old, ants have been shown to survive and prosper through natural 
selection. Hence, the way they live provides us with an idea for finding the best solution in a search space. We 
designed our algorithm steps to mimic the behaviors of ants of different groups throughout all phases of their life 
cycle. The flowchart of our algorithm is shown in Fig 2. Each step in the flowchart is explained below. 
 
3.1 Initialization 
 
First, initial values of the parameters are set by the user. Those parameters include the number of nests (N), the total 
number of ants in each nest (NP), the number of male ants (NM), the number of offspring created in each iteration 

Mating 

Reproductive stage Founding stage 

Ergonomic stage 



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

4 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

(NO), the lifespan of a worker ant and the maximum number of iterations. The algorithm starts by randomly picking 
G positions in the search space, where G >> N. Then the fitness of each position is evaluated. The one with the 
highest fitness is chosen to be the position of the first nest. Next, the Euclidean distances between the first nest and 
the remaining G-1 positions are calculated; the one located farthest from the first nest is assigned to be the second 
nest. This process continues, assigning locations for the jth nest, where j = {3, 4, …, N}. It should be reiterated that 
the jth nest must be located farthest away from the first j-1 nests. 
 
When all N nests are determined, NP initial ants of each nest are randomly placed at a location inside the nest, 
where the boundary of the nest is set to be half the distance to the nearest nest. The initial queen in each nest is the 
one with the best fitness among all ants in the nest; hereafter, her location represents the location of the nest itself.  
 
Next, NM initial male ants are selected by roulette wheel selection method in which the size of the slot corresponds 
to the distance between the ant and the queen, as in: 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑑𝑑𝑖𝑖
∑ 𝑑𝑑𝑘𝑘𝑁𝑁𝑁𝑁−1
𝑘𝑘=1

                      )1(  

 
where di is the Euclidean distance between the queen and ant i. The rest of the initial ants which have not been 
selected are assigned as workers. 

 
Fig. 2: Flowchart of the proposed algorithm 

 
 

 

 

No 

START 

Initialize parameters 
 

Generate Initial Population 
(Queen, Male, Worker) 

Crossover 
 

Meet Stopping 
Criteria ? 

 

Foraging 
 

Migration 
 

Feeding Process 
 

Environmental 
Condition ≥ ρ 

 

STOP 

No 

Yes 

Yes 

Initialization 

Reproductive process 



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

5 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

3.2  Reproductive Process 
 
This step begins with multiple matings between the queen and several males. In this algorithm, each mating creates 
only one offspring. Therefore, a group of NO males are randomly selected from the set of NM males. Then an 
offspring is generated by arithmetically crossing [20] the genotype of the queen with that of the selected male: 
 

𝑠𝑠𝑜𝑜𝑜𝑜 = 𝛼𝛼𝛼𝛼 + (1 − 𝛼𝛼)𝑚𝑚                  )2(  
 
where q is the genotype of the queen, m is the genotype of each selected male and α is a random number in [0, 1]. 
An example of the arithmetic crossover operation is shown in Fig 3. 
 
The set of offspring generated either develops into non-reproductive workers, or reproductive males and females, 
depending on the environmental conditions and the needs of the colony. When a queen has just started a new nest, 
workers are most needed to gather food and maintain the nest. However, when the environment is suitable, females 
and males are needed to expand the population. Our algorithm mimics this behavior to determine the role of newly 
generated offspring. First, the environmental condition of the colony is determined by calculating the ratio of the 
average fitness of workers to the fitness of the queen. It is very important to note that, in this paper, the fitness 
function (f(•)) is defined as the reciprocal of the objective function. If the ratio is less than an input threshold, ρ, the 
full set of offspring will develop into workers; otherwise, they will develop into reproductive ants. Offspring in the 
reproductive group will be improved by workers, as described in the feeding process in Step 3.3, while non-
reproductive offspring will be assigned to forage for food as described in the foraging step 3.4. 
 
 

Queen 0.3 0.2 0.3 0.4 0.3 0.3 
 

Male 0.1 0.2 0.3 0.2 0.5 0.9 
 
 

Offspring 0.2 0.2 0.3 0.3 0.4 0.6 
 

 
Fig. 3: Example of the arithmetic crossover operation 

 
3.3  Feeding Process 
 
This process starts by pairing each of the reproductive offspring generated in step 3.2 with a worker ant. For each 
reproductive offspring, a worker is randomly chosen from a roulette wheel, in which the size of the slot, sloti, for a 
particular worker, is proportional to the its fitness: 
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 = 𝑓𝑓(𝑤𝑤𝑖𝑖)
∑ 𝑓𝑓(𝑤𝑤𝑘𝑘)𝑁𝑁𝑁𝑁
𝑘𝑘=1

                     )3(  

 
where f(wi) is the fitness of worker i and NW is the number of workers in the current iteration. As the result of the 
roulette wheel selection method, the fitter workers are likely to take care of more offspring than the less fit ones. 
After pairing, the worker that has a better fitness value than the offspring modifies the genotype of the offspring 
according to Eq. (4). 
  

𝑠𝑠𝑜𝑜𝑜𝑜 = 𝑠𝑠𝑜𝑜𝑜𝑜 + 𝛽𝛽(𝑤𝑤 − 𝑠𝑠𝑜𝑜𝑜𝑜)                   )4(  
 
where β is a random real number in [0, 1]. However, if the offspring has a better fitness than the worker, the 
offspring will not be modified. Next, each reproductive offspring, which passes through the feeding process, is 
checked to determine whether it resides within any of the existing nests. If yes, the offspring fitness is compared 
with that of the queen; if it is better than the queen, it replaces the queen, whereas the offspring has lower fitness 
value, it is killed. If the offspring does not reside within any of the existing nests, this means this area has not been 
covered and searched by any of the existing nests. In order to start exploring this area, a new nest is built and the 
offspring is assigned to be the queen of a new nest. 
 

α = 0.5 



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

6 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

3.4  Foraging 
 
The foraging is a task performed by worker ants. In nature, most ants forage by following the pheromone trails of 
earlier successful foragers. However, desert ants follow the leader visually, while it is moving toward a landmark. In 
our algorithm, foraging mimics the desert ant behavior, by having the leader move toward a randomly selected 
landmark and the members follow the leader, where the position, wi, for ant i is calculated: 
 

𝑤𝑤𝑖𝑖 = �
𝑤𝑤𝑖𝑖 + � 𝑓𝑓(𝑤𝑤𝑖𝑖)

𝑓𝑓(𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
� (𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑙𝑙𝑘𝑘 − 𝑤𝑤𝑖𝑖) + �1 − 𝑓𝑓(𝑤𝑤𝑖𝑖)

𝑓𝑓(𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
� (𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑤𝑤𝑖𝑖), 𝑖𝑖 𝑖𝑖𝑠𝑠 𝑠𝑠ℎ𝑒𝑒 𝑠𝑠𝑒𝑒𝑙𝑙𝑙𝑙𝑒𝑒𝑙𝑙.

𝑤𝑤𝑖𝑖 + � 𝑓𝑓(𝑤𝑤𝑖𝑖)
𝑓𝑓(𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)

� � 1
𝑖𝑖−1

∑ (𝑤𝑤𝑘𝑘 − 𝑤𝑤𝑖𝑖)𝑖𝑖−1
𝑘𝑘=1 � + �1 − 𝑓𝑓(𝑤𝑤𝑖𝑖)

𝑓𝑓(𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)
� (𝑤𝑤𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑤𝑤𝑖𝑖), 𝑖𝑖 𝑖𝑖𝑠𝑠 𝑠𝑠ℎ𝑒𝑒 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑒𝑒𝑙𝑙.

    (5) 

 
where f(wi) is the fitness of worker i, f(wbest) is the fitness of the fittest worker among all foraging groups, and k is 
the worker that is in the same foraging group as the worker i and is in front of the worker i in the line. In this 
foraging, each nest sends out R foraging groups to gather food in the vicinity of the nest. Therefore, the workers in 
each nest are divided into R foraging groups using the following steps:  
 
i) The workers are ranked by fitness.  
ii) The workers are assigned in a circular order to the groups, starting from the fittest worker in the ranking – i.e., 

rank 1 is assigned to the first group, rank 2 is assigned to the second group, …, rank R+1 is assigned to the first 
group, rank R+2 is assigned to the second group, and so on, until all workers have been assigned. The first 
assigned worker of each group assigned as leader. All workers, as well as the leader, have a lifetime of L 
iterations. After that, they die and the successors in line replace them.  

 
It is important to note that, if a foraging group moves toward a landmark for a length of time and does not find a 
good food source along the path, a new landmark will be randomly selected. 
 
3.5  Migration of the Nest 
 
In our algorithm, the location of the queen also represents the location of the nest. If a worker wanders into a 
position that makes its fitness value greater than that of the queen, the algorithm will move the queen to that 
position, which mimics migrating the nest to a better position. 
 
3.6  Termination 
 
The algorithm runs step 3.2 to step 3.5 repeatedly until one of the stopping conditions is satisfied. Then it stops and 
outputs the location of the best nest. The pseudocode is presented in Fig. 4. 
 
4.0   EXPERIMENTAL RESULTS 
 
A total of 23 standard benchmark functions [12][21], of various complexity, were used to assess the algorithm in 
terms of convergence rate and solution quality. The 23 benchmark functions can be classified into two groups 
according to their dimensional size. 
 

• First group: 13 low-dimensional functions (11 two-dimensional functions and 2 four-dimensional 
functions).  

• Second group: 10 high-dimensional (30 dimensions) functions that represent computationally complex 
tasks. The functions F1 – F6 are unimodal, whereas F7 – F10 are multimodal functions. The multimodal 
functions were used to test the ability of the algorithm to escape local minima. 

 
The test functions are described in Tables 1 and 2, which provide the following information for each test function: 
Function name, Equation, Dimension (D), Search domain (S), and Optimum value (fmin). For each test function, five 
experimental repetitions were performed with different initial populations. Since the performance of the 
metaheuristic algorithms strongly depends on parameter settings, as most other intelligent systems, the parameters of 
our algorithm were tuned in order to optimize the output. After tuning, the best value for each parameter was chosen 
– see Table 3.  



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

7 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

Initialize the control parameters; 
  Select the positions of N nests from the randomly generated G positions; 

Randomly generate initial population of each nest; 
Repeat 

For each nest 
Create the offspring by using the arithmetic crossover; 
Calculate the ratio of the average fitness of workers to the fitness of the queen, and then assign it as 
the environmental condition of the nest; 
If the environmental condition >= ρ then 

Pair each offspring with a worker ant by using the roulette wheel selection; 
For each newly created offspring 

If f(w) > f(off) then 
            off ← off + β(w – off); 
          End if 
          If the offspring resides within any of the existing nests then 
            If f(off) > f(q) then 
              q ← off; 
            Else 
              Kill the offspring; 
            End if 
          Else 
            Create a new nest, and then assign the offspring to be the queen of this new nest; 
          End if 
        End for 

Else 
Append the newly created offspring to a list of worker ants; 

      End if 
Divide the worker ants into R groups; 
For each worker ant 

Move the worker ant to its new position; 
      End for 
      If f(wbest) > f(q) then 
        q ← wbest; 
      End if       
    End for 

Until one of the stopping criteria is met. 
Return the location of the best nest; 

 
Fig. 4: Pseudocode of our algorithm 

 



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

8 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

Table 1: Descriptions of the low-dimensional functions 

 Function Name Equation D S fmin 

F1 Six-hump camel-
back 

4
2

2
221

6
14

1
2
1 44

3
1.24 xxxxxxx +−++−

 
2 [-5, 5] -1.0316285 

F2 Branin 10cos
8
111065

4
1.5

1

2

1
2
122 +






 −+






 −+− xxxx

πππ  
2 

[ ]
[ ]15,0

10,5

2

1

∈
−∈

x
x

 
0.39788736 

F3 Goldstein-Price 
( ) ( )( )

( ) ( )( )2
2212

2
11

2
21

2
2212

2
11

2
21

2736481232183230

36143141911

xxxxxxxx

xxxxxxxx

+−++−−+×

++−+−+++

 
2 [-2,2] 3 

F4 Beale ( )[ ] ( )[ ] ( )[ ]23
21

22
21

2
21 x1x625.2x1x25.2x1x5.1 −−+−−+−−  2 [-4.5,4.5] 0 

F5 Easom’s Function ( ) ( ) ( ) ( )[ ]2
2

2
1 XX

21 excosxcos π−−π−−−  2 [-10,10] -1 

F6 Dekkers and Aarts ( ) ( )42
2

2
1

522
2

2
1

2
2

2
1

5 xx10xxxx10 +++−+ −  2 [-20,20] -24777 

F7 Shubert ( )( )( ) ( )( )( )∑∑ ==
++++

5

1i 2
5

1i 1 ix1icosiix1icosi  2 [-10,10] -186.730908 

F8 De Jong ( ) ( )21
2

2
2
1 x1xx10093.3905 −−−−  2 [-2.048, 2.048] 3905.93 

F9 Martin and Gaddy ( ) ( )[ ]221
2

21 3/10xxxx −++−  2 [0, 10] 0 

F10 Schaffer 
( )( )22

2
2
1

2
2

2
1

2

xx001.01

5.0xxsin
5.0

++

−




 +

+  2 [-100, 100] 0 

F11 Easton and Fenton 
( ) 

















 +

+
+

++
10
1

xx
100xx

x
x1x12 4

21

2
2

2
1

2
1

2
22

1  2 [0, 10] 1.74 

F12 Wood 
( ) ( ) ( ) ( )

( ) ( )[ ] ( )( )1x1x8.191x1x1.10

x1xx90x1xx100

42
2

4
2

2

2
3

22
34

2
1

22
12

−−+−+−+

−+−+−+−
 4 [-5, 5] 0 

F13 Powell Quartic ( ) ( ) ( ) ( )441
4

32
2

43
2

21 xx10x2xxx5x10x −+−+−++  4 [-5, 5] 0 

Table 2: Descriptions of the high-dimensional functions 

 Function Name Equation D S fmin 

F1 Rosenbrock ( ) ( )[ ]∑ −

= + −+−
1

1
22

1
2 1100D

i iii xxx  30 [-30, 30] 0 

F2 Schwefel 2.21 { }Dixi ≤≤1,max  30 [-100, 100] 0 

F3 Step  ( )
2D

1i i 5.0x∑=
+  30 [-100, 100] 0 

F4 Sum of different 
power ∑ =

+D

i

i
ix

1

1

 30 [-1, 1] 0 

F5 Sphere ∑ =

D

i ix
1

2  30 [-100, 100] 0 

F6 Schwefel 2.22 ∑ ∏= =
+

D

i

D

i ii xx
1 1

 30 [-100, 100] 0 

F7 Salomon ∑∑ ==
+





−

n

i i
n

i i xx
1

2
1

2 1.02cos1 π
 

30 [-100, 100] 0 

F8 Rastrigin ( )( )∑ =
+−

D

i ii xx
1

2 102cos10 π  30 [-5.12, 5.12] 0 

F9 Griewank 1cos
4000 11

2

+







−∏∑ ==

n

i
iD

i
i

i
xx  30 [-600, 600] 0 

F10 Ackley ( ) ex
D

x
D

D

i i
D

i i +





−








−− ∑∑ == 11

2 2cos1exp1
5
1exp2020 π

 
30 [-32.768, 32.768] 0 



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

9 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

Table 3: Values of parameters used in the proposed algorithm 

Parameters Values 
Maximum number of iterations 10,000 
Number of nests (N) 5 
Number of ants in each nest (NP) 41 
Number of male ants (NM) 20 
Number of workers (NW) 20 
Number of offspring created in each iteration (NO) 10 
ρ 0.1 – 1.0  
Number of foraging routes (R) 5 
Lifetime of the worker (L) 10 iterations 

 
 
The experimental results are reported in this and the following paragraphs. For convergence rate, the performance of 
our algorithm was compared with GA. For the low-dimensional functions, our algorithm converged to the optimum 
solution much faster than GA. As an example, figures 5 – 7 compare convergence of our algorithm and GA for the 
Six-hump camel-back, Branin, and Goldstein-price functions. From those figures, it is clear that our algorithm 
converged very much faster than GA, finding the global optima in a very small number of iterations, while GA was 
not able to find the global optimum. For all high-dimensional functions, except Rosenbrock, our algorithm 
converged slightly faster than the GA. As an example of this, the comparison of the convergence curves of our 
algorithm and GA for Salomon function is shown in figure 8. For Rosenbrock function, our algorithm converged 
slower than the GA, but eventually converged to a better solution. In figure 9, we see that for Rosenbrock, GA 
rapidly converged to its final value of 28.75187 while our algorithm converged steadily and slowly to its final value 
of 26.46650. 
 
 

 
Fig. 5: Convergence curves for Six-hump camel-back function 

 
 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 100 200 300 400 500

Six-hump Camel-back 

Proposed Model GA



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

10 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

 
Fig. 6: Convergence curves for Branin function 

 
 

 
Fig. 7: Convergence curves for Goldstein-price function 

 
 

 
Fig. 8: Convergence curves for Salomon function 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750

Branin 

Proposed Model GA

0
10
20
30
40
50
60
70
80
90

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750

Goldstein-Price 

Proposed Model GA

0

2

4

6

8

10

12

14

0 10 20 30 40 50

Salomon 

Proposed Model GA



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

11 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

 

Fig. 9: Convergence curves for Rosenbrock function 
 
 
For solution quality, we compared with several state-of-the-art algorithms in the literature. For the low-dimensional 
functions, results were compared with those of Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), 
Spider Monkey Optimization (SMO), WCA, and Evaporation rate based WCA (ER-WCA). The results for PSO, 
ABC, and SMO were taken from Bansal et al. [22] while results for WCA and ER-WCA were taken from Sadollah 
et al. [12]. For the high-dimensional functions, results were compared against those from Real-Coded Chemical 
Reaction Optimization (RCCRO) [11], Social Spider Optimization (SSO), Artificial Bee Colony (ABC), Fruit Fly 
Optimization (FFO), Improved Fruit Fly Optimization (IFFO), and Harmony Search (HS). Results for SSO and 
ABC were obtained from Cuevas et al. [23], while those for FFO, IFFO and HS were taken from Pan et al. [9]. 
 
Tables 4 and 5 show the performance in terms of the average solution and standard deviation. The symbol “-” 
denotes that the algorithm was not tested on that function. The numbers in bold are the best solutions among all 
algorithms in each test function. For the low-dimensional functions, Table 4 shows that our algorithm outperformed 
other algorithms with respect to the percentage of global optima found. It was able to find the global optima in 10 
out of 13 test functions, i.e. F1, F2, F3, F4, F5, F8, F9, F10, F11, and F13.  ER-WCA, which came in second, 
successfully found the global optimum for 1 out of 9 functions tested while PSO, ABC, SMO, and WCA were not 
able to locate the global optimum in any of the functions tested. For functions F6 and F7 (for which no algorithm 
was able to find the global optimum), our algorithm exhibited the best performance for function F6 and the worst 
performance for function F7. However, for these 2 functions, differences between the best and the worst were very 
small. Moreover, it should be mentioned that our algorithm was very robust to the initial starting position, as its 
standard deviation was very small for all functions. 
 
For the high-dimensional functions, Table 5 shows that our algorithm performed better than other six algorithms we 
considered. It was able to find the global optima in 9 out of 10 test functions. RCCRO, FFO, and IFFO, which were 
tied for second place, managed to find the global optimum in only 1 function. For the function F1, none of the 
algorithms was able to converge to the global optimum. For the average solution, our algorithm achieved the best 
result, edging out RCCRO. However, our algorithm performed much more consistently than RCCRO as indicated 
by the lower standard deviation. Moreover, results on multimodal functions (F7 – F10) confirmed that our algorithm 
was able to escape from local optima and converged to global optima. 
 
 

25

30

35

40

45

50

55

60

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 4250 4500 4750

Rosenbrock 

Proposed Model GA



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

12 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

Table 4: Experimental results for low-dimensional functions 
 

 Our 
Algorithm PSO ABC SMO WCA ER-WCA 

F1 -1.0316285 
(0) 

-1.0311485 
(3.05E-04) 

-1.0311205 
(3.11E-04) 

-1.0312265 
(2.99E-04) 

-1.0316 
(1.38E-08) 

-1.0316 
(7.89E-10) 

F2 0.39788736 
(0) 

0.39836836 
(2.82E-04) 

0.39836436 
(2.79E-04) 

0.39831236 
(2.91E-04) 

0.398272 
(3.20E-04) 

0.398193 
(2.94E-04) 

F3 3.00 
(0) 

3.000483 
(2.70E-04) 

3.000488 
(3.08E-04) 

3.000485 
(2.96E-04) 

3.000561 
(2.55E-04) 

3.000494 
(3.08E-04) 

F4 0 
(0) 

4.22E-06 
(2.67E-06) 

7.81E-06 
(2.42E-06) 

4.81E-06 
(2.58E-06) - - 

F5 -1.00 
(0) 

-0.9999999 
(2.87E-14) 

-0.9999999 
(5.64E-07) 

-0.9999999 
(2.69E-14) - - 

F6 -24776.51834 
(0) 

-24776.509 
(5.64E-03) 

-24776.510 
(5.25E-03) 

-24776.511 
(4.98E-03) - - 

F7 -186.71340 
(0.02) 

-186.730807 
(4.01E-04) 

-186.7309027 
(5.95E-06) 

-186.7309030 
(5.58E-06) - - 

F8 3905.93 
(0) - - - 3905.940137 

(0.0382) 
3905.934711 
(9.83E-03) 

F9 0 
(0)  - - - 4.16E-04 

(3.11E-04) 
2.45E-04 

(2.55E-04) 

F10 0 
(0) - - - 1.16E-03 

(2.58E-03) 
2.46E-04 

(2.62E-04) 

F11 1.74 
(0) - - - 1.7441 

(1.96E-06) 
1.7444 

(1.08E-03) 

F12 9.19E-07 
(4.77E-07) - - - 1.58E-06 

(7.60E-06) 
0 

(0) 

F13 0 
(0) - - - 6.09E-10 

(8.29E-10) 
4.57E-29 

(2.48E-28) 

 

Table 5: Experimental results for high-dimensional functions 

 Our 
Algorithm RCCRO SSO ABC FFO IFFO HS 

F1 26.96094 
(0.388366) 

27.06 
(34.27) 

114 
(39) 

138 
(155) 

767 
(881) 

73.40 
(272) 

196 
(619) 

F2 0 
(0) 

9.32E-03 
(3.66E-03) -  - 2.59 

(3.37) 
2.87E-06 

(3.73E-07) 
7 

(0.966) 

F3 0 
(0) 

0 
(0) 

2.68E-03 
(6.05E-04) 

4.06E-03 
(2.98E-03) 

0 
(0) 

0 

(0) 
3 

(2.07) 

F4 0 
(0) - - - 1.04 

(1.99) 
4.90E-15 

(2.15E-14) 
6.12E-09 

(1.08E-08) 

F5 0 
(0) 

6.43E-07 
(2.10E-07) 

1.96E-03 
(9.96E-04) 

2.90E-03 
(1.44E-03) 

5.22 
(0.599) 

4.96E-13 
(3.18E-13) 

7.07 
(3.24) 

F6 0 
(0) 

2.20E-03 
(4.34E-04) 

0.0137 
(3.11E-03) 

0.135 
(0.0801) 

136 
(425) 

2.33E-06 
(4.25E-07) 

0.0859 
(0.0539) 

F7 0 
(0) - 0.274 

(0.0517) 
4.14 

(0.469) 
0.40 

(0.0474) 
1.60 

(0.309) 
1.80 

(0.297) 

F8 0 
(0) 

9.08E-04 
(2.88E-04) 

8.59 
(1.11) 

26.40 
(10.60) 

286 
(34) 

6.34E-11 
(0.182) 

1.03 
(0.756) 

F9 0 
(0) 

0.0112 
(0.0162) 

3.29E-03 
(5.49E-04) 

0.0522 
(0.0342) 

126 
(51.9) 

0.0123 
(0.0162) 

1.09 
(0.0318) 

F10 0 
(0) 

1.94E-03 
(4.19E-04) 

0.0136 
(2.36E-03) 

0.653 
(0.309) 

20.50 
(0.145) 

5.13E-07 
(9.35E-08) 

1.04 
(0.341) 

 
 



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

13 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

5.0  CONCLUSION 
 
We presented a new swarm optimization algorithm based on the cooperative behavior of three different kinds of ants 
in a colony. To obtain a good starting point, the initial nests were evenly distributed throughout the search space. For 
each nest, the offspring were created by using an arithmetic crossover operation. Then the foraging process was used 
to refine the quality of the search results. We test our algorithm on 23 well-known benchmark functions. Our 
algorithm outperformed all the other algorithms in terms of convergence rate and solution quality. Regarding the 
convergence rate, our algorithm converged to the global optima in less than 10 iterations for most functions, 
whereas GA used several hundred to several thousand iterations. Regarding the solution quality, our algorithm 
successfully found the global optima in more than 80 percent of the test functions, whereas the second-place 
algorithm only found around 10 percent of the functions tested. 

 
REFERENCES 
 
[1] A. D. Belegundu, T. R. Chandrupatla, Optimization Concepts and Applications in Engineering. 2nd ed. 

Cambridge University Press, 2011. 
 
[2] J. Kennedy, R. Eberhart, “Particle Swarm Optimization”, in Proceedings of the IEEE International 

Conference on Neural Networks, 1995, pp. 1942–1948. 
 
[3] M. Dorigo, V. Maniezzo, A. Colorni, “Ant System: Optimization by a Colony of Cooperating Agents”, 

IEEE Transactions on Systems, Man, and Cybernetics-Part B, Vol. 26 Issue 1, pp. 29-41. 
 
[4] D. Simon, “Biogeography-based Optimization”, IEEE Transactions on Evolutionary Computation, Vol. 12, 

pp. 702–713. 
 
[5] W. Gong, Z. Cai, C. X. Ling, H. Li, “A Real-coded Biogeography-based Optimization with Mutation”, 

Applied Mathematics and Computation, Vol. 216, pp. 2749–2758. 
 
[6] A. H. Gandomi, A. H. Alavi, “Krill Herd: A New Bio-inspired Optimization Algorithm”, Communications 

in Nonlinear Science and Numerical Simulation, Vol. 17, pp. 4831–4845. 
 
[7] B. Niu, H. Wang, “Bacterial Colony Optimization”, Discrete Dynamics in Nature and Society, Vol. 2012. 
 
[8] W. T. Pan, “A New Fruit Fly Optimization Algorithm: Taking the Financial Distress Model as an 

Example”, Knowledge-Based Systems, Vol. 26, pp. 69-74. 
 
[9] Q. K. Pan, H. Y. Sang, J. H. Duan, L. Gao, “An Improved Fruit Fly Optimization Algorithm for 

Continuous Function Optimization Problems”, Knowledge-Based Systems, Vol. 62, pp. 69–83. 
 
[10] R. V. Rao, V. J. Savsani, D. P. Vakharia, “Teaching-Learning-Based Optimization: An Optimization 

Method for Continuous Non-linear Large Scale Problems”, Information Sciences, Vol. 183, pp. 1–15. 
 
[11] A. Y. S. Lam, V. O. K. Li, J. J. Q. Yu, “Real-coded Chemical Reaction Optimization”, IEEE Transactions 

on Evolutionary Computation, Vol. 16, pp. 339–353. 
 
[12] A. Sadollah, H. Eskandar, A. Bahreininejad, J. H. Kim, “Water Cycle Algorithm with Evaporation Rate for 

Solving Constrained and Unconstrained Optimization Problems”, Applied Soft Computing, Vol. 30, pp. 58–
71. 

 
[13] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, “Water Cycle Algorithm - A Novel Metaheuristic 

Optimization Method for Solving Constrained Engineering Optimization Problems”, Computers and 
Structures, Vol. 110–111, pp. 151–166. 

 
[14] M. Ghaemi, M. R. Feizi-Derakhshi, “Forest Optimization Algorithm”, Expert Systems with Applications, 

Vol. 41, pp. 6676–6687. 
 
[15] B. Hölldobler, E. O. Wilson, The Ants. 1st ed. Harvard University Press, 1990. 
 



Swarm Optimization Algorithm Based on the Ant Colony Life Colony Life Cycle (Special Issue 2019). pp.1-14 

14 
 

Malaysian Journal of Computer Science. Information Technology and Electrical Engineering Special Issue, 2019 
 

[16] R. Wehner, C. Meier, C. Zollikofer, “The Ontogeny of Foraging Behaviour in Desert Ants, Cataglyphis 
bicolor”, Ecological Entomology, Vol. 29, pp. 240–250. 

 
[17] P. Schultheiss, A. Wystrach, E. L. G. Legge, K. Cheng, “Information Content of Visual Scenes Influences 

Systematic Search of Desert Ants”, The Journal of Experimental Biology, Vol. 216, pp. 742–749. 
 
[18] S. Bolek, H. Wolf, “Food Searches and Guiding Structures in North African Desert Ants, 

Cataglyphis”, Journal of Comparative Physiology A, Vol. 201, pp. 631–644. 
 
[19] N. J. R. Plowes, K. Ramsch, M. Middendorf, B. Hölldobler, “An Empirically Based Simulation of Group 

Foraging in the Harvesting Ant, Messor Pergandei”, Journal of Theoretical Biology, Vol. 340, pp. 186–
198. 

 
[20] X. Yao, Y. Liu, G. Lin, “Evolutionary Programming Made Faster”, IEEE Transactions on Evolutionary 

Computation, Vol. 3, pp. 82–102. 
 
[21] M. Jamil, X. S. Yang, “A Literature Survey of Benchmark Functions for Global Optimization Problems”, 

International Journal of Mathematical Modelling and Numerical Optimisation, Vol. 4, pp. 150–194. 
 
[22] J. C. Bansal, H. Sharma, S. S. Jadon, M. Clerc, “Spider Monkey Optimization Algorithm for Numerical 

Optimization”, Memetic Computing, Vol. 6, pp. 31–47. 
 
[23] E. Cuevas, M. Cienfuegos, D. Zaldívar, M. Pérez-cisneros, “A Swarm Optimization Algorithm Inspired in 

the Behavior of the Social-spider”, Expert Systems with Applications, Vol. 40, pp. 6374–6384. 
 


	2.1 Life Cycle of an Ant Colony
	2.1.1  Founding Stage
	2.1.2   Ergonomic Stage
	2.1.3  Reproductive Stage

	2.2 Mating Behavior
	2.3 Foraging Behavior
	2.4 Migration Behavior
	3.1 Initialization
	3.2   Reproductive Process
	3.3  Feeding Process
	3.4   Foraging
	3.5   Migration of the Nest
	3.6  Termination

