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ABSTRACT 
 
Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been used to solve a variety of 
complex optimization problems. In spite of the acceptance of the algorithm in various fields, PSO still suffers 
from common issues such as premature convergence and local minima. This provides a platform for generating 
a variety of PSO variants. Although these variants are successful in addressing issues specific to a directed 
domain, they are still unable to resolve the issues effectively. The Interior-Point Methods (IPMs) are efficient 
tools for solving nonlinear optimization problems. On the one hand, the method is depicted as the most robust 
algorithm for solving large scale nonlinear optimization problems. On the other, similar to PSO, the methods 
are still plagued with several issues. We propose Primal-Dual Interior Point Particle Swarm Optimization 
(pdPSO) to resolve the shortcomings of a standard PSO without the limitations of the IPM methods. We applied 
the Primal Dual procedure to each particle in a finite number of iterations, and fed the PSO with the its output. 
We compared the performance of our new algorithm (pdPSO) with IPM and PSO using nine different dynamic 
benchmark functions. Our results revealed that pdPSO performed better than both the independent PSO 
algorithm and the IPM method. The proposed algorithm is not susceptible to premature convergence, and can 
better avoid local minima than conventional PSO, hence hypothetically it has the potential to perform better 
than many variants of PSO. 
 
Keywords: Particle Swarm Optimization (PSO), Interior Point Method, Primal-Dual, Unimodal functions, 
Multimodal functions  
 
1.0 INTRODUCTION 

 
PSO is a stochastic population based algorithm [1] that operates on the optimization of a candidate solution (or 
particle) aimed at optimizing a directed performance measure [2]. The first PSO algorithm (proposed by 
Kennedy and Eberhart [3]) was based on the social behaviours exemplified by a flock of birds, a school of fish, 
and herds of animals. The algorithm uses a set of candidates called particles that undergo gradual changes 
through collaboration and contest among the particles from one generation to the other.  PSO have been used to 
solve non-differentiable [4], non-linear [4, 5] and non-convex engineering problems [6]. Several state of the art 
meta-heuristic algorithms are available (e.g., Genetic Algorithm [7], Flower Pollination Algorithms [8], Cuckoo 
Search Algorithm [9, 10], Artificial Bee Colony Algorithm [11, 12], Fireworks Algorithm [13], Ringed Sealed 
Search Optimization Algorithm [14], Chicken Swarm Optimization [15, 16], Bat Algorithm [17], and Firefly 
Algorithm [18]), however, PSO is the focus of our work as it is theoretically straightforward and with limited 
computational requirements [19]. PSO uses only a few parameters, which have minimal influence on the results 
compared to the other optimization algorithms. This negates the variance of results generated by the algorithm. 
This property also applies to the initial generation of the algorithm. The randomness of the initial generation will 
not be reflected in the output produced. Despite these advantages, PSO faces shortcomings similar to the other 
optimization algorithms. Specifically, the PSO algorithm suffers from premature convergence, the inability to 
solve dynamic optimization problems, the tendency of particles to be trapped in local minima and partial 
optimism (which degrades the regulation of its speed and direction). 
 
Several attempts have been made to increase the efficiency of PSO algorithms. Liang et al [20] proposed the 
comprehensive learning strategy PSO (CLPSO) with the aim of achieving better performance in comparison to 
the present PSO modifications for multimodal functions. Zhao [21] presented the Perturbed Particle Swarm 
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Optimisation for numerical optimisation algorithm (pPSA). The algorithm uses a scheme for overcoming 
premature convergence by engaging a particle updating method that focuses on the inspiration of disconcerted 
global best particles. Akbari and Ziarati [22] developed the rank based particle swarm optimisation algorithm 
with dynamic adaptation (PSOrank). The algorithm utilizes the cooperative behaviour of particles to achieve a 
significant boost in efficiency compared to a conventional PSO algorithm. Zhan et al. [23] proposed orthogonal 
learning PSO (OLPSO-G). This algorithm uses a perpendicular learning approach to establish a conducive and 
efficient model to direct particles to move in the most appropriate path. Huang et al. [24] developed Example-
based learning PSO (ELPSO) for continuous optimisation. Their aim is to use an example-based learning 
scheme to proffer a superior performance for multimodal functions. Adaptive parameter tuning of PSO centred 
on velocity information (APSO-VI) was proposed by Xu in [25]. Diversity enhanced PSO with neighbourhood 
(DNSPSO) was presented in [26]. This algorithm employs the diversity improvement method and 
neighbourhood search approaches to achieve an optimum point between exploration and exploitation. Multi-
objective sorting-based learning PSO for continuous optimisation (MLPSO) proposed in [27] uses the MSL 
approach to direct particles to move in the most suitable path by creating a direction paradigm that has superior 
fitness value and variety in swarm populations.  In spite of all the efforts, the presence of premature 
convergence, the inability of particles to escape from being trapped in global optima, and the incompatibility of 
PSO to handle dynamic tasks are still evident in different variants of PSO algorithms that have been proposed. 
 
Recently, the state-of-the-art Interior-Point algorithm has gained popularity as the most preferred approach for 
providing solutions to large-scale linear programming problems [28]. They are however limited due to their 
inability to solve problems that are unstable in nature. This is because contemporary Interior-Point algorithms 
are unable to cope with the ever-increasing need of the constraints. Efforts to improve the efficiency of the 
Interior-Point algorithm have led to the development of more variants of this algorithm that can handle unstable 
linear programming problems (similar steps were observed in the meta-heuristic field). These algorithms lower 
the number of work per iteration by using a small number of constraints; hence drastically reducing the 
computational processing time [29]. Over the years, some progress has been made in overcoming the challenges 
associated with interior point algorithms. The Inner-iteration Krylov subspace methods for least square 
problems was proposed in [30]. The GMRES method for rank deficient least square problems were used for 
convergence of the inner-iteration in [31] and an interior-point method for LP based on Krylov Subspace 
Iterative Solvers with Inner-Iteration Preconditioning was proposed in [32]. A new direction in polynomial time 
interior-point methods for monotone linear complementarity problems was proposed in [33]. The major 
shortcoming among the different approaches mentioned above is that the variants of IPM proposed are still 
plagued with the problem of solving the derivatives system of linear equations as the iterations progress (which 
is known as ill-conditioning) to the end of the interior-point. There is no iterative solver that has succeeded in 
resolving this ill-conditioned problem.  
 
In this study, we proposed a fusion of conventional PSO with the Primal-Dual Interior-Point method to resolve 
those common issues relevant to the PSO algorithm. Two key components of this implementation are the 
explorative capacity of PSO, and the exploitative capability of the Primal-Dual Interior-Point algorithm. On one 
hand, exploration is key in searching (i.e., traversing the search landscape) to provide reliable approximation 
values of the global optimal [34]. On the other, exploitation is critical to focus the search on ideal solutions 
resulting from exploration to produce more refined results [35].  The speed at which an algorithm attains the 
global optimum is a very important parameter for assessing the performance of the algorithm. Since the Primal 
Dual method is a robust optimisation algorithm, it is expected that pdPSO will produce superior results in 
comparison to the traditional PSO algorithm, the Primal Dual algorithm alone, and the other state of the art PSO 
algorithms. 
 
2.0 PARTICLE SWARM OPTIMIZATION (PSO) ALGORITHM 

 
In PSO, (Xi) represents the position of a particle, and (Vi) is the velocity of the particle. The particle’s number is 
i, where (i = 1,…,N), and N is the number of particles in the swarm. The ith particle is represented as 

),...,,(
2! iNiiI

XXXX  . While the velocity is the rate at which the next position is changing with respect to the current 
position. Variable ),...,,(

2! iNiiI
VVVV   represents the velocity for the particle i. At the start of the algorithm, initial 

numerical values of the position and velocity of the particles are assigned randomly. Equations (1) and (2) will 
then update the position and velocity of the particles for subsequent iterations during the search process. 
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According to Shi and Eberhart [36], to avert eruption, the value  
)1(

,
t

miv
 is fixed at ± vmax . This is because the 

value of vmax will be too large if the search range is very wide. If  vmax is too small, the scope of the search will be 
excessively limited, thereby forcing the particles to support local exploration. "w" is the weight of inertia 
(constriction factor); this regulates the algorithm search properties. Shi and Eberhart [36] suggested a large 
inertia value (a more global search) initiation that is dynamically reduced towards the end of the optimization (a 
more local search). The use of small inertia weights usually guarantees quick convergence as the time spent on 
the exploration of the global space is reduced [37].   
 
 

 
 

Fig 1: The flowchart of a conventional PSO Algorithm (Kennedy and Eberhart [3]). 
 
 
The inclusion of w in the equation is to provide an equilibrium between the global and local search capabilities 

of the particles. The positive constant 1c  and 2c represent the cognitive scaling and social scaling factors which 
are set to the value of 2 in [38]. Both the cognitive and social scaling factors assist PSO in successfully building 
the local bests into the global best [39]. The stochastic variables ()1rand and ()2rand  have a uniform distribution. 
These random variables are independent functions that provide energy to the particles. The best position found 
so far by the particle is represented as 

mi
pbest

,
. The best position attained by the neighbouring particles is 

represented as m
gbest . There are two types of particle neighbourhoods in PSO, and the type of neighbourhood 

determines the value of m
gbest . The two types of neighbourhoods are: 

 
1. gBest (Global neighbourhood) – There is a full connection among the particles, and the exploration of 

swarm is controlled by the best particle in the swarm.  



PDPSO: The Fusion Of Primal-Dual Interior Point Method And Particle Swarm Optimization Algorithm.  pp 17-34 

 

 
20 

Malaysian Journal of Computer Science.  Vol. 31(1), 2018 

2. lBest (Local neighbourhood) – There is no full connection among the particles in the swarm, rather 
they are connected only to their neighbours. 

 
Equation (2) is used in updating the position of the particles whereby the velocity is added together with the 

earlier position and a new search is started from its former position. Eberhart and Shi [38] bounded 
)1(

,
t

mix
 to 

avoid a situation whereby particles are spending too much time in infeasible region. A problem dependent 

fitness function is used to evaluate the superiority of 
)1(

,
t

mix
. Assuming the present solution is superior to the 

fitness of 
mipbest ,

 or mgbest  then the new position will replace mipbest ,  or mgbest  accordingly. Unless the condition 

for ending the search is met (either the iteration has reached its peak or we have obtained the desired solution), 
the update process will continue. The optimal solution is the best particle found when the stopping criterion is 
satisfied [37].  The flowchart for the original PSO algorithm for collective robot search is shown in fig. 1. 
 
 
3.0 PRIMAL DUAL INTERIOR POINT METHOD 

 
The primal-dual interior-point (PDIP) method is an excellent example of an algorithm that uses constraint-
reduction methods. Mehrotra [40] developed the Mehrotra’s Predictor-Corrector PDIP algorithm, which has 
been executed in the majority of the interior-point software suites for solving both linear and convex-conic 
problems [41]. The primal-dual methods are a new category of interior-point methods that have been practically 
employed for solving large-scale nonlinear optimization problems recently [42]. Contrary to the traditional 
primal method, the primal-dual method evaluates both the primal variables x and the dual Lagrange multipliers 
λ related to the constraints concurrently. The disconcerted Karush-Kuhn-Tucker (KKT) equations below can be 
solved using the precise primal-dual solution (x 

∗ ,λ 
∗ ) at a given parameter µ 

 
∇𝐹(𝑥) − 𝐶 λ = 0

  λ 𝐶 (𝑥) =  𝜇, 𝑖 = 1, … , 𝑚
 with the constraint (C(x), λ) ≥ 0.  (3) 

The Newton’s algorithm and the line search approach are employed to recursively solve any primal or primal-
dual sub-problem for a given µ value [43]. Feasibility and convergence is enforced in the algorithm by selecting 
the size of each step in the iteration. This can be achieved by appropriately reducing the merit function used in 
gauging the degree of advancement to the solution. The dual variables of primal dual can be protected by using 
the Fµ as a function that can incorporate the primal and dual variables [44]. At the same time, it measures the 
harmony between the data and the fitting model for a particular choice [45]. The major setback of the barrier 
functions is the ineffectiveness of traditional line exploration methods thereby necessitating the development of 
more efficient line searches [46].  

According to [46], the primal-dual method can efficiently handle large linear programming problems (the bigger 
the problem size, the more noticeable the efficiency of the primal-dual algorithm). The algorithm is not 
susceptible to degradation and the number of iterations does not depend on the number of vertices in the feasible 
search space [47]. The primal-dual algorithm uses considerably less iterations compared to the simplex method 
and the algorithm is able to generate ideal solutions for a linear programming problem in less than 100 iterations 
irrespective of the huge number of variables involved in nearly all its implementations [47]. However, the 
primal-dual method is hindered by its inability to detect the possibility of a problem having an unbounded status 
(to a certain extent, the method is labelled as incomplete). This issue has been addressed sufficiently using 
undiversified model as suggested in [48, 44]. In addition, the computational cost for each iteration in primal-
dual is higher than that of the simplex algorithm. In spite of this issue, the primal-dual method is able to handle a 
large linear programming problem better than the simplex algorithm. This is because the total work required in 
providing solution to a large linear programming problem is comprised of the multiplication of the number of 
iterations with the work executed for each iteration. The primal-dual steps have the inclination of producing 
inferior steps that defile the boundaries s > 0 and z > 0 extensively, causing the progress to dwindle. The 
Interior Point Method algorithm below was adapted from Paul, Jean, and Sophie [44]. The algorithm is depicted 
in Fig. 2.  
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Fig. 2: Pseudo code of the Primal Dual algorithm. 

 

4.0 PRIMAL DUAL INTERIOR POINT PARTICLE SWARM OPTIMIZATION (PDPSO) 

We propose a new algorithm called Primal-Dual-PSO algorithm (pdPSO) which combines the best features of 
both conventional PSO and the primal-dual method. The new algorithm works by first initiating the particles’ 
positions randomly. We then pass the particles to the Primal-Dual method, which gives us its initial optimization 
result after a number of iterations. The result of the Primal-Dual optimization is then inserted into the PSO, 
which creates a perturbation in the population and also maintain diversity in the population until there is either 
convergence to the global optimal or the termination criteria is reached.  PSO was fused into the primal dual 
algorithm in order to combine the strengths of the two approaches and compensate for the drawbacks of each of 
them. The hybrid algorithm integrating the Primal Dual Interior Point Method and PSO is depicted in Fig. 3.  

Step 1: Initialize iteration count, particles with randomly chosen positions, and velocities within 
the limits of the search space. 

Step 2: Initialize the number of primal variables (n), the number of constraints (m), and the total 
number of primal-dual optimization variables (nv). Initialize the Lagrange multipliers. 
Initialize second-order information. 

Step 3: Primal Dual phase activated 

Step 4: Reset the random number generator  

Step 5: Initialize some of the algorithm parameters (such as the maximum centering parameter, 
maximum forcing number, minimum barrier parameter, maximum step size, minimum 
step size, granularity of backtracking search, and amount of actual decrease we will 
accept in line search).     

Step 6: Compute the responses of the unperturbed Karush-Kuhn-Tucker optimality conditions 

Step 7: Check for convergence  

Step 8: Update the BFGS approximation to the Hessian of the objective. 

Step 9: Find Solution to perturbed KKT system. 

Step 10: Perform backtracking line search. 

Step 11: Compute the response of the merit function and the directional gradient at the current 
point and search direction. 

Step 12: Compute the candidate point, the constraints, and the response of the objective function 
and merit function at the candidate point.            
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Fig. 3: Primal- Dual-PSO (pdPSO) algorithm. 

 

5.0 RESULTS AND DISCUSSION 

It is evident from our previous studies, that due to the shortcomings of the conventional PSO and the need of 
applying the algorithm to address multi-faceted domains, there is a need to develop (or customize) various 
versions of PSO algorithms (custom PSO variants). This has contributed towards the ever-expanding pool of 
PSO algorithms. The algorithm has some fundamental problems to function as a modular multi-faceted problem 
solver. This problem is prominent when handling dynamic optimizations. The problem is fundamental at its 
core, and we hypothesize that by introducing a hybrid algorithm (with the integration of the primal-dual 
method), we would be able to address the fundamental issues of conventional PSO, thus transforming the 
algorithm into a modular multi-faceted problem solver practical to any domain or problem. This section 
provides a comparative analysis of the performance of pdPSO against a multitude of optimization problems and 
benchmarking data from state of the art algorithms.    

5.1 Parameter settings 

A dimension value of 10 is assigned for each function (i.e. n = 10). For each of the PSO mentioned above, a 
swarm of 30 particles was generated with a global best topology. We carried out 400 iterations for each of the 
algorithms we tested using 9 benchmark functions running on MATLAB R2012a. The cognitive scaling c1 
which influences local search is set to the value of 2. Similarly, social scaling, c2, which influences the global 
search, is identically set to the value of 2. Functions rand1 and rand2 are stochastic variables that have the 
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uniform distribution U (0, 1). They are independent functions that provide energy to the particles. To avert 
eruption during the particles’ exploration of the search space, the value of the velocity is fixed at ±Vmax and the 
value of Vmax is set to be equal to the value of Xmax. This helps in controlling the search range. The range of the 
searches will become wide if the value assigned is large, thus limiting the algorithm to only global exploration. 
In contrast, if the value of Vmax is small the scope of the search will be excessively limited thereby forcing the 
particles to support only local exploration. The inertia weight w called (constriction factor) is the inertia 
parameter; this regulates the algorithm’s searching properties. The initial value is 0.9 and this value decreases to 
a final value of 0.4. We started with a larger inertia value (a more global search) that is dynamically reduced 
towards the end of the optimization (a more local search). A small inertia weight guarantees quick convergence 
of the algorithms due to the reduction of time for exploration in the global space. The inertia weight w is used to 
provide equilibrium between the global and local search capabilities of the particles in the swarm. 

5.2 Benchmark problems 

For the purpose of our experimental study, nine benchmark functions were selected. They can be classified as 
either Unimodal or Multimodal (both can either be static or dynamic) for the experiment. The selected functions 
are Sphere [49], Tripod [50], NDParabola [50], Griewank [51, 52], Rastrigin [51], Ackley [53], Shaffer f6 [54], 
Shaffer f6 modified [55], and f6 Bubble Dynamic [55].  

The first function is Ackley (results are depicted in Fig. 4 and Table 1). It is a multi-modal function with deep 
local minima. It has several local minima. It is commonly used to test the ability of the optimization algorithm to 
escape local minima. It also used to test the presence of premature convergence in the algorithm. Based on the 
simulation results for IPM, PSO, and pdPSO, there are many local minima generated by the function for PSO 
and pdPSO. PSO and pdPSO converged to global optimum, while IPM got trapped in local minima. The 
convergence rates of PSO and pdPSO are almost identical. For the pdPSO algorithm, the first 200 iterations 
were handled by the IPM, while the last 200 iterations were executed by the PSO (thereby combining the 
exploitative power of IPM and the explorative ability of the PSO). We observed a sharp drop in the gbest of 
pdPSO from the first to the 50th iteration, and the convergence rate is doubled when the output of the IPM is 
inserted into the PSO algorithm. In our comparisons, we used the values of the best fitness, mean fitness, and 
standard deviation because they are some of the performance measures mentioned in [56]. When we compared 
the performance of the three algorithms in terms of the numerical values of best fitness, mean fitness, and 
standard deviation, we can deduce that the performance of PSO is better than the other two algorithms for the 
Ackley function.  

The second function is the Sphere function which is a simple unimodal function with no communication 
between the variables. Optimization algorithms would commonly be able to solve the function efficiently. The 
function can also be used to test the presence of premature convergence in optimization algorithms. From the 
result of our simulation (depicted in Fig. 5 and Table 2), pdPSO and IPM converged faster than PSO. Within 
250 iterations, both PSO and pdPSO converged successfully. PSO underwent more iterations before 
convergence because it seems to be trapped at a local minimum. This suggests the superiority of the pdPSO (in 
terms of convergence speed) compared to the PSO algorithm. We compared the performance of the three 
algorithms based on the values of best fitness, mean fitness and standard deviation. From the numerical results, 
the performance of pdPSO was better in terms of the best fitness, mean fitness and standard deviation. 
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Fig 4: Graph of Ackley function for Primal-Dual, PSO and pdPSO 

 

Table 1: Result Comparison for Ackley Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 
Primal-Dual-PSO 5.79464e-10 2.28608e-05 +9.00249e-07 4.16412e-06 
Primal-Dual 1.64406e-06 3.57445e+00 +1.44513e+00 1.35517e+00 
PSO 2.72194e-10 2.20607e-08 +1.94965e-09 4.12310e-09 

 

 

Fig 5: Graph of Sphere function for Primal-Dual, PSO and pdPSO 
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Table 2: Result Comparison for Sphere Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 
Primal-Dual-PSO 1.87349e-29 9.11685e-27 +1.19780e-27 2.20741e-27 
Primal-Dual 3.05475e-18 1.00235e-17 +6.33670e-18 1.71551e-18 
PSO 1.80186e-18 2.76436e-14 +1.05297e-15 5.02818e-15 

 

The third function is the Griewank function. It is a non-linear multimodal function. It is highly multimodal 
because of the cosine modulation that produces many widespread local minima. The Griewank function has 
characteristics that are relatively similar to that of the Rastrigin function except for the number of local optima, 
which is more frequent in the Griewank function. The numerous local minima have complex structure, and only 
multi-initialization optimization algorithms can converge to the global minimum (which increases based on the 
dimension of the problem). The function tests the ability of the optimization algorithm to escape local minima. 
In Fig. 6 and Table 3, we have the simulation results of the Griewank function for IPM, PSO, and pdPSO. PSO 
encounters many local optima for this function. However, all the algorithms successfully converged to the 
global optimum. The performance of IPM and pdPSO for Griewank function is far better than that of PSO based 
on their speed of convergence. In terms of the numerical value of best fitness, the pdPSO is superior to the other 
two algorithms. However, the performance of primal-dual is better in terms of mean fitness and standard 
deviation. pdPSO however has a better convergence rate, thereby giving it an edge over Primal-Dual and PSO.  

 

Fig 6: Graph of Griewank function for Primal-Dual, PSO and pdPSO 

 

Table 3: Result Comparison for Griewank Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 
Primal-Dual-PSO 5.65695e-02 3.45688e+00 +8.22243e-01 7.07663e-01 
Primal-Dual 5.65695e-02 1.08272e+00 +2.73931e-01 3.61745e-01 
PSO 8.86239e-02 1.91516e+00 +4.59212e-01 5.75298e-01 
 

The fourth function is the Schaffer f6 Function. It is a complex multimodal function. Most hill-climbing and 
reactive search methods find it very difficult due to its circular local maxima. It is considered a Genetic 
Algorithm which is a hard function to optimize. It is used to test the ability of the optimization algorithm to 
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escape local minima as well as premature convergence. The challenge that this function poses to optimization 
algorithms is the rise in the magnitude of prospective maxima which must be overcome to get to a minimum as 
one moves nearer to the global minimum. The simulation results for the Schaffer f6 function with IPM, PSO, 
and pdPSO is depicted in Fig. 7 and Table 4. Apparently, this function poses a challenge to both PSO and 
pdPSO (presence of several local minima). There was a sharp and steady fall in the value of gbest of IPM and 
pdPSO up till the 150th iteration. pdPSO seems to be trapped in a local minimum from the 150th to the 275th 
iteration after which it experienced a fall in the value of its gbest again. PSO however converged faster under 
this function when compared to IPM and pdPSO. While pdPSO and PSO have better performance in terms of 
the numerical value of best fitness, PSO is better in terms of mean fitness and standard deviation. 

 

Fig 7: Graph of Schaffer f6 function for Primal-Dual, PSO and pdPSO 

 

Table 4: Result Comparison for Schaffer f6 Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 
Primal-Dual-PSO 0.00000e+00 2.42012e-01 +8.06720e-03 4.41851e-02 
Primal-Dual 2.22045e-16 4.24477e-01 +3.33300e-01 1.13677e-01 
PSO 0.00000e+00 4.99600e-16 +2.40548e-17 9.29832e-17 

 

The fifth function is the Schaffer f6 Modified Function which is the sum of five Schaffer f6 functions with 
different focal points to reach local minimum. It also tests the ability of the optimization algorithm to escape 
local minima and to check for the presence of premature convergence. IPM and pdPSO converged faster than 
PSO (refer Fig. 8 and Table 5). After the 30th iteration, PSO experienced a sharp fall in the value of its gbest 
and from that point, it is unable to escape a local. pdPSO performs better in terms of its best fitness value. When 
we compare the mean fitness and standard deviation, PSO performs better. pdPSO is however superior to PSO 
and Primal-dual because it was able to overcome the problem of premature convergence. pdPSO was able to 
escape being trapped in local minima whereas PSO and Primal-dual were not able to do so. 
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Fig 8: Graph of Schaffer f6 modified function for Primal-Dual, PSO and pdPSO 

 

Table 5: Result Comparison for Schaffer f6 modified Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 
Primal-Dual-PSO 3.95063e-01 5.66018e-01 +4.03145e-01 3.34147e-02 
Primal-Dual 3.95063e-01 4.80710e-01 +4.59061e-01 2.29854e-02 
PSO 3.98750e-01 4.84612e-01 +4.01617e-01 1.56753e-02 

 
The sixth function is the Schaffer f6 Bubble Dynamic Function, which comprises of Schaffer f6 where each 
goes on bubble magnitude cycles up and down. They are 180 degrees out of phase with each other. The function 
tests the ability of the algorithm to work effectively in a dynamic environment. The simulation results for the 
Schaffer f6 Bubble Dynamic function with IPM, PSO, and pdPSO is depicted in Fig. 9. Details are presented in 
Table 6. The bubble magnitude cycle was repeated specifically for both IPM and pdPSO. PSO has a number of 
local minima while IPM and pdPSO have lesser local minima peaks. pdPSO and IPM converged faster than 
conventional PSO. The performance of pdPSO is better in terms of mean fitness, Primal-dual was better in terms 
of best fitness, and PSO performs better in terms of standard deviation. We can deduce that the overall 
performance of pdPSO is better for this function than that of the other two algorithms because it demonstrates 
its ability to handle a dynamic environment. This means that pdPSO is more suitable in solving problems that 
are dynamic in nature compared to standard PSO. PSO and Primal-dual were static and got trapped in local 
minima while pdPSO was not. 

The seventh function is NDParabola. It is commonly used to test for global minimization problems in Clerc’s 
“semi-continuous challenge.” It works well with gradient methods but it is incompatible with PSO which is a 
stochastic method. This function tests the ability of the algorithm to converge to a global optima after escaping 
from being trapped in local minima.  The simulation results are depicted in Fig. 10 and Table 7. The IPM, PSO 
and pdPSO algorithms converged to global optima. Both PSO and pdPSO have several local minima as shown 
in the figure. There was a significant reduction in the gbest value of IPM, PSO, and pdPSO from the beginning 
of the iteration to the end with the convergence speed favouring pdPSO and IPM as compared to the 
conventional PSO. Based on the numerical values of best fitness, mean fitness and standard deviation, pdPSO 
performs better for this function. Our new algorithm (pdPSO) also demonstrates its ability to escape being 
trapped in local minima and to evade premature convergence in this function. In Fig. 10, the red line depicting 
the convergence of Primal Dual was overlapped by pdPSO. 
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Fig 9: Graph of Schaffer f6 Bubble Dynamic function for Primal-Dual, PSO and pdPSO 

 

Table 6: Result Comparison for Schaffer f6 Bubble Dynamic Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 
Primal-Dual-PSO 5.18555e-02 8.98753e-01 -6.49279e-01 5.05210e-01 
Primal-Dual 4.58057e-02 4.43780e-01 -2.89311e-01 9.56216e-02 
PSO 9.02080e-01 9.02179e-01 -9.02131e-01 1.50446e-05 
 

 

Fig 10: Graph of NDParabola function for Primal-Dual, PSO and pdPSO 
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Table 7: Result Comparison for NDParabola Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 
Primal-Dual-PSO 1.87351e-29 9.11685e-27 +1.19780e-27 2.20741e-27 
Primal-Dual 3.05475e-18 1.00235e-17 +6.33670e-18 1.71551e-18 
PSO 1.80186e-18 2.76436e-14 +1.05297e-15 5.02818e-15 

 

 

The eighth function is the Rastrigin function which is a non-convex, multi-modal version of the sphere function 
with the addition of cosine modulation to produce frequent local minima. It contains millions of local optima 
(organized in a systematic lattice). This function is a moderately problematic function because of the large 
search space and the large number of local minima. This highly multimodal function has several local minima 
which are regularly distributed throughout the iteration for all three algorithms (depicted in Fig. 11 and Table 8). 
IPM, PSO and pdPSO converged to a global optimum. IPM, PSO and pdPSO (because of the nature of the 
Rastrigin function) have several local minima and were trapped in those minima for the rest of the iteration. The 
performances of IPM and pdPSO were slightly better as compared to conventional PSO. Judging from the 
results of the numerical values of best fitness and mean fitness, pdPSO performs better. If we consider the 
standard deviation, the performance of PSO seems to be better. The rate of convergence of pdPSO is however 
superior to that of the other two algorithms.  

 

 

 

Fig 11: Graph of Rastrigin function for Primal-Dual, PSO and pdPSO 

 

Table 8: Result Comparison for Rastrigin Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 
Primal-Dual-PSO 6.29026e+00 1.81783e+02 +7.29321e+01 3.88201e+01 
Primal-Dual 6.16813e+00 2.69526e+01 +1.60688e+01 5.13242e+00 
PSO 8.95462e+00 8.96635e+00 +8.95527e+00 2.32294e-03 
 

 
The ninth function is Tripod, which is a semi-continuous function. This function is commonly hard to solve 
compared to many other optimization algorithms because of the tendency of a stagnant plateau at local minima. 
The simulation results for the Tripod function with IPM, PSO, and pdPSO are depicted in Fig. 12 and Table 9. 
The gbest value of PSO reduced sharply from the start of the iteration up till the 10th iteration and decreased 
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steadily from there until it got trapped in a local minimum and was unable to escape throughout the iterations. 
Using the numerical values of best fitness and mean fitness as parameters for our judgment, there was not much 
difference between the performances of PSO and pdPSO. The performance of pdPSO was better based on the 
standard deviation when compared to the other two algorithms. From our experiment, pdPSO was able to 
achieve our aim of designing an algorithm that can overcome the problem of premature convergence that 
usually characterizes standard PSO. In Fig. 12, the red line denoting the convergence of Primal Dual algorithm 
is not available because the algorithm failed to generate any gbest value. This is because the algorithm (which is 
deterministic in nature) is unable to cope with such benchmark functions like tripod. 

Based on the analysis of our results for the nine benchmarking functions used, pdPSO performs better than the 
other algorithms in 7 out of 9 test cases. In the remaining 2 cases, PSO was superior to the other algorithms. The 
performance of pdPSO was superior for the Sphere, Griewank, Schaffer f6 modified, Schaffer f6 Bubble 
dynamic, NDParabola, and Tripod functions. The functions where PSO performs better are Ackley and Schaffer 
f6. The ability of pdPSO to overcome the problem of premature convergence and escape being trapped in local 
minima was demonstrated in the Sphere, Griewank, Schaffer f6 modified, Schaffer f6 Bubble dynamic, and 
NDParabola functions. The Tripod function further confirmed the capacity of our algorithm to avoid premature 
convergence. The results from Schaffer f6 Bubble dynamic shows that pdPSO has the capability to handle 
optimization problems in a dynamic environment. 

 

 

Fig 12: Graph of Tripod function for Primal-Dual, PSO and pdPSO 

 

Table 9: Result Comparison for Tripod Function 

Algorithm Best Fitness Worst Fitness Mean Fitness Std. Deviation 
Primal-Dual-PSO 2.00000e+00 2.00000e+00 +2.00000e+00 5.94551e-15 
Primal-Dual 2.00000e+00 2.00000e+00 +2.00000e+00 1.76109e-08 
PSO 2.00000e+00 2.00000e+00 +2.00000e+00 1.96425e-12 

 
With reference to convergence speed, pdPSO was faster than PSO and Primal-dual in 5 out of 9 functions that 
we considered. We can therefore consider pdPSO as a fast algorithm that can be used to solve complex 
numerical optimization problems. pdPSO also has a higher level of steadiness in comparison to the other two 
algorithms. The mean fitness and standard deviation values for the Sphere, Schaffer f6 Bubble dynamic, 
NDParabola and Tripod functions were very small when compared to those of PSO and Primal-dual. We can 
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therefore conclude that pdPSO is a stable algorithm that has the capacity to produce rational results that are 
reliable. Finally we can deduce that pdPSO is a robust algorithm as it performs better than PSO and Primal-dual 
in its ability to successfully find the global optimum on all the benchmarking functions we used, especially on 
the Griewank, Schaffer f6, NDParabola and Rastrigin functions which many of the most recent optimization 
algorithms find very problematic to solve. Consequently, pdPSO can be considered as an algorithm that can 
withstand adverse conditions. 

 

6.0 CONCLUSION 

This paper presents a new hybrid optimization algorithm named Primal Dual Interior Point Method Particle 
Swarm Optimization (pdPSO). This algorithm combines the explorative ability of PSO with the exploitative 
capacity of the Primal Dual Interior Point Method, thereby possessing a strong capacity for avoiding premature 
convergence. A comparative study of the proposed algorithm has been conducted with conventional PSO and 
Primal Dual using nine benchmark functions. It is very clear that our algorithm performs better in terms of 
precision, rate of convergence, steadiness and robustness. The desirable behaviour of pdPSO under the unimodal 
and multimodal functions shows that the algorithm is a suitable tool for solving complex optimization problems 
that PSO or Primal Dual alone cannot solve efficiently. Our future works include the application of the proposed 
algorithm for swarm robotics such as flocking and pattern formation. This would be able to validate the 
capability of the proposed algorithm in handling dynamic optimisation tasks. The applicability of the algorithm 
can also be extended to solve real world problems such are retina vessel image segmentation, big data 
optimisation, and economic dispatch. 
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